Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
RSC Med Chem ; 15(6): 2063-2079, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911147

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) comprise the second largest class of new psychoactive substances (NPS), and typically α-amino acid moieties are incorporated as part of their design. Limited investigation has been performed into elucidating structure-activity relationships around commonly used α-amino acid-derived head groups, mainly with valine and tert-leucine-derived compounds previously described. As such, proactive synthesis, characterisation and pharmacological evaluation were performed to explore structure-activity relationships of 15 α-amino acid derivatives, with both the natural isomers and their enantiomers at CB1 and CB2 investigated using a fluorescence-based membrane potential assay. This library was based around the detected SCRAs MPP-5F-PICA, MMB-5F-PICA, and MDMB-5F-PICA, with the latter showing significant receptor activation at CB1 (pEC50 = 8.34 ± 0.05 M; E max = 108 ± 3%) and CB2 (pEC50 = 8.13 ± 0.07 M; E max = 99 ± 2%). Most valine and leucine derivatives were potent and efficacious SCRAs, while smaller derivatives generally showed reduced activity at CB1 and CB2, and larger derivatives also showed reduced activity. SAR trends observed were rationalised via in silico induced fit docking. Overall, while natural enantiomers showed equipotent or greater activity than the unnatural isomers in most cases, this was not universal. As such, a number of these compounds should be monitored as emerging NPS, and various substituents described herein.

2.
ACS Chem Neurosci ; 15(11): 2160-2181, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38766866

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are a growing class of new psychoactive substances (NPS) commonly derived from an N-alkylated indole, indazole, or 7-azaindole scaffold. Diversification of this core (at the 3-position) with amide-linked pendant amino acid groups and modular N-alkylation (of the indole/indazole/7-azaindole core) ensures that novel SCRAs continue to enter the illicit drug market rapidly. In response to the large number of SCRAs that have been detected, pharmacological evaluation of this NPS class has become increasingly common. Adamantane-derived SCRAs have consistently appeared throughout the market since 2011, and as such, a systematic set of these derivatives was synthesized and pharmacologically evaluated. Deuterated and fluorinated adamantane derivatives were prepared to evaluate typical hydrogen bioisosteres, as well as evaluation of the newly detected AFUBIATA.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Halogenación , Indazoles , Indoles , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/síntesis química , Relación Estructura-Actividad , Animales , Indazoles/farmacología , Indazoles/química , Indazoles/síntesis química , Humanos , Indoles/farmacología , Indoles/química , Adamantano/análogos & derivados , Adamantano/farmacología , Adamantano/química , Deuterio , Ratones , Valina/análogos & derivados
3.
ACS Chem Neurosci ; 15(9): 1787-1812, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597712

RESUMEN

ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gßγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and ß-arrestin 2 (ßarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; ßarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/síntesis química , Humanos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Células HEK293 , Relación Estructura-Actividad , Animales
4.
Biochem Pharmacol ; 222: 116052, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354957

RESUMEN

The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and ß-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and ß-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of ß-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and ß-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards ß-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/metabolismo , beta-Arrestinas/metabolismo , Receptores de Cannabinoides/metabolismo , beta-Arrestina 1/metabolismo , Ligandos , Proteínas de Unión al GTP/metabolismo , Cannabinoides/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
5.
Forensic Toxicol ; 41(1): 114-125, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652070

RESUMEN

PURPOSE: AMB-FUBINACA is a synthetic cannabinoid receptor agonist (SCRA) which is primarily metabolised by hepatic enzymes producing AMB-FUBINACA carboxylic acid. The metabolising enzymes associated with this biotransformation remain unknown. This study aimed to determine if AMB-FUBINACA metabolism could be reduced in the presence of carboxylesterase (CES) inhibitors and recreational drugs commonly consumed with it. The affinity and activity of the AMB-FUBINACA acid metabolite at the cannabinoid type-1 receptor (CB1) was investigated to determine the activity of the metabolite. METHODS: The effect of CES1 and CES2 inhibitors, and delta-9-tetrahydrocannabinol (Δ9-THC) on AMB-FUBINACA metabolism were determined using both human liver microsomes (HLM) and recombinant carboxylesterases. Radioligand binding and cAMP assays comparing AMB-FUBINACA and AMB-FUBINACA acid were carried out in HEK293 cells expressing human CB1. RESULTS: AMB-FUBINACA was rapidly metabolised by HLM in the presence and absence of NADPH. Additionally, CES1 and CES2 inhibitors both significantly reduced AMB-FUBINACA metabolism. Furthermore, digitonin (100 µM) significantly inhibited CES1-mediated metabolism of AMB-FUBINACA by ~ 56%, while the effects elicited by Δ9-THC were not statistically significant. AMB-FUBINACA acid produced only 26% radioligand displacement consistent with low affinity binding. In cAMP assays, the potency of AMB-FUBINACA was ~ 3000-fold greater at CB1 as compared to the acid metabolite. CONCLUSIONS: CES1A1 was identified as the main hepatic enzyme responsible for the metabolism of AMB-FUBINACA to its less potent carboxylic acid metabolite. This biotransformation was significantly inhibited by digitonin. Since other xenobiotics may also inhibit similar SCRA metabolic pathways, understanding these interactions may elucidate why some users experience high levels of harm following SCRA use.


Asunto(s)
Cannabinoides , Humanos , Cannabinoides/farmacología , Dronabinol , Digitonina , Células HEK293 , Agonistas de Receptores de Cannabinoides/farmacología
6.
ACS Chem Neurosci ; 14(1): 35-52, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36530139

RESUMEN

Over 200 synthetic cannabinoid receptor agonists (SCRAs) have been identified as new psychoactive substances. Effective monitoring and characterization of SCRAs are hindered by the rapid pace of structural evolution. Ahead of possible appearance on the illicit drug market, new SCRAs were synthesized to complete a systematic library of cumyl-indole- (e.g., CUMYL-CPrMICA, CUMYL-CPMICA) and cumyl-indazole-carboxamides (e.g., CUMYL-CPrMINACA, CUMYL-CPMINACA), encompassing butyl, pentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, and cyclohexylmethyl tails. Comprehensive pharmacological characterization was performed with three assay formats, monitoring the recruitment of either wild-type or C-terminally truncated (ßarr2d366) ß-arrestin2 to the activated cannabinoid 1 receptor (CB1) or monitoring Gßγ-mediated membrane hyperpolarization. Altered compound characterization was observed when comparing derived potency (EC50) and efficacy (Emax) values from both assays monitoring the same or a different signaling event, whereas ranges and ranking orders were similar. Structure-activity relationships (SAR) were assessed in threefold, resulting in the identification of the pendant tail as a critical pharmacophore, with the optimal chain length for CB1 activation approximating an n-pentyl (e.g., cyclopentylmethyl or cyclohexylmethyl tail). The activity of the SCRAs encompassing cyclic tails decreased with decreasing number of carbons forming the cyclic moiety, with CUMYL-CPrMICA showing the least CB1 activity in all assay formats. The SARs were rationalized via molecular docking, demonstrating the importance of the optimal steric contribution of the hydrophobic tail. While SAR conclusions remained largely unchanged, the differential compound characterization by both similar and different assay designs emphasizes the importance of detailing specific assay characteristics to allow adequate interpretation of potencies and efficacies.


Asunto(s)
Cannabinoides , Simulación del Acoplamiento Molecular , Cannabinoides/farmacología , Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Indazoles/farmacología , Indazoles/química , Receptor Cannabinoide CB1
7.
Front Psychiatry ; 13: 1010501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245876

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a significant portion new psychoactive substances (NPS) detected and seized worldwide. Due to their often potent activation of central cannabinoid receptors in vivo, use of SCRAs can result in severe intoxication, in addition to other adverse health effects. Recent detections of AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark a continuation in the appearance of SCRAs bearing novel tail substituents. The proactive characterization campaign described here has facilitated the detection of several new SCRAs in toxicological case work. Here we detail the synthesis, characterization, and pharmacological evaluation of recently detected SCRAs, as well as a systematic library of 32 compounds bearing head, tail, and core group combinations likely to appear in future. In vitro radioligand binding assays revealed most compounds showed moderate to high affinity at both CB1 (pK i = < 5 to 8.89 ± 0.09 M) and CB2 (pK i = 5.49 ± 0.03 to 9.92 ± 0.09 M) receptors. In vitro functional evaluation using a fluorescence-based membrane potential assay showed that most compounds were sub-micromolar to sub-nanomolar agonists at CB1 (pEC50 = < 5 to 9.48 ± 0.14 M) and CB2 (pEC50 = 5.92 ± 0.16 to 8.64 ± 0.15 M) receptors. An in silico receptor-ligand docking approach was utilized to rationalize binding trends for CB2 with respect to the tail substituent, and indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental to affinity.

8.
ACS Chem Neurosci ; 13(8): 1281-1295, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35404067

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS). They commonly comprise N-alkylated indole, indazole, or 7-azaindole scaffolds with amide-linked pendant amino acid groups. To explore the contribution of the amino acid side chain to the cannabinoid pharmacology of SCRA NPS, a systematic library of side chain-modified SCRAs was prepared based on the recent detections of amino acid derivatives 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), and 20 (NNL-1). In vitro binding affinities and functional activities at cannabinoid type 1 and 2 receptors (CB1 and CB2, respectively) were determined for all the library members using radioligand competition experiments and a fluorescence-based membrane potential assay. Binding affinities and functional activities varied widely across compounds (Ki = 0.32 to >10 000 nM, EC50 = 0.24-1259 nM), with several clear structure-activity relationships (SARs) emerging. Affinity and potency at CB1 changed as a function of the heterocyclic core (indazole > indole > 7-azaindole) and the pendant amino acid side chain (tert-butyl > iso-propyl > iso-butyl > benzyl > ethyl > methyl > hydrogen). Ensemble docking at CB1 revealed a clear steric basis for observed SAR trends. Interestingly, although 15 (PX-1) and 19 (PX-2) have been detected in recreational drug markets, they failed to induce centrally CB1-mediated effects (e.g., hypothermia) in mice using radiobiotelemetry. Together, these data provide insights regarding structural contributions to the cannabimimetic profiles of 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), 20 (NNL-1), and other SCRA NPS.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Animales , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/química , Fármacos del Sistema Nervioso Central , Indazoles/química , Indazoles/farmacología , Ratones , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Receptores de Cannabinoides , Valina/análogos & derivados
9.
RSC Med Chem ; 13(2): 156-174, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35308023

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) remain one the most prevalent classes of new psychoactive substances (NPS) worldwide, and examples are generally poorly characterised at the time of first detection. We have synthesised a systematic library of amino acid-derived indole-, indazole-, and 7-azaindole-3-carboxamides related to recently detected drugs ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA, and characterised these ligands for in vitro binding and agonist activity at cannabinoid receptor subtypes 1 and 2 (CB1 and CB2), and in vivo cannabimimetic activity. All compounds showed high affinity for CB1 (K i 0.299-538 nM) and most at CB2 (K i = 0.912-2190 nM), and most functioned as high efficacy agonists of CB1 and CB2 in a fluorescence-based membrane potential assay and a ßarr2 recruitment assay (NanoBiT®), with some compounds being partial agonists in the NanoBiT® assay. Key structure-activity relationships (SARs) were identified for CB1/CB2 binding and CB1/CB2 functional activities; (1) for a given core, affinities and potencies for tert-leucinamides (ADB-) > valinamides (AB-) ≫ phenylalaninamides (APP-); (2) for a given amino acid side-chain, affinities and potencies for indazoles > indoles ≫ 7-azaindoles. Radiobiotelemetric evaluation of ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA in mice demonstrated that ADB-BUTINACA and ADB-P7AICA were cannabimimetic at 0.1 mg kg-1 and 10 mg kg-1 doses, respectively, as measured by pronounced decreases in core body temperature. APP-BUTINACA failed to elicit any hypothermic response up to the maximally tested 10 mg kg-1 dose, yielding an in vivo potency ranking of ADB-BUTINACA > ADB-P7AICA > APP-BUTINACA.

10.
Drug Test Anal ; 13(7): 1412-1429, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33908179

RESUMEN

The present work is the last of a three-part study investigating a panel of 30 systematically designed synthetic cannabinoid receptor agonists (SCRAs) including features such as the 4-pentenyl tail and varying head groups including amides and esters of l-valine (MMB, AB), l-tert-leucine (ADB), and l-phenylalanine (APP), as well as adamantyl (A) and cumyl moieties (CUMYL). Here, we evaluated these SCRAs for their capacity to activate the human cannabinoid receptor 1 (CB1 ) via indirect measurement of G protein recruitment. Furthermore, we comparatively evaluated the results obtained from three in vitro assays, based on the recruitment of ß-arrestin 2 (ßarr2 assay) or Gαi protein (mini-Gαi assay), or binding of [35 S]-GTPγS. The observed efficacies (Emax ) varied depending on the conducted assay. Statistical analysis suggests that the population means of the relative intrinsic activity (RAi ) significantly differ for the [35 S]-GTPγS assay and the other two assays, but the population means of the ßarr2 and mini-Gαi assays were not statistically different. Our data suggest that differences observed between the ßarr2 and mini-Gαi assays are the best predictor for 'biased agonism' towards ßarr or G protein recruitment in our study. SCRAs carrying an ADB or MPP moiety as a head group tended to produce elevated Emax values in the ßarr2 assay, which might result in a tendency of these compounds to cause pronounced tolerance in users-a hypothesis that should be evaluated further by future studies. In general, a comparison of efficacies derived from different assays is difficult and should only be conducted very cautiously.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Proteínas de Unión al GTP/metabolismo , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/química , Cannabinoides/síntesis química , Cannabinoides/química , Humanos , Indazoles/síntesis química , Indazoles/química , Indazoles/farmacología , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Relación Estructura-Actividad , Arrestina beta 2/metabolismo
11.
Drug Test Anal ; 13(7): 1402-1411, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33769699

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are the second largest class of new psychoactive substances (NPS) and are associated with serious adverse effects and even death. Despite this, little pharmacological data are available for many of the most recent SCRAs. This study consists of three different parts, aiming to systematically evaluate a panel of 30 SCRAs using binding and different in vitro human cannabinoid 1 receptor (CB1 ) activation assays. The present Part II investigated the SCRA analogs for their CB1 activation via a ß-arrestin recruitment assay. The panel was systematically designed to include key structural sub-features of recent SCRAs. Thus, the 4-pentenyl tail of MMB-4en-PICA and MDMB-4en-PINACA was retained while incorporating varying head groups from other prevalent SCRAs, including amides and esters of L-valine, L-tert-leucine, and L-phenylalanine, and adamantyl and cumyl moieties. All 30 SCRAs activated CB1 , with indazoles generally showing the greatest potency (EC50 = 1.88-281 nM), followed by indoles (EC50 = 11.5-2293 nM), and the corresponding 7-azaindoles (EC50 = 62.4-9251 nM). Several subunit-linked structure-activity relationships were identified: (i) tert-leucine-functionalized SCRAs were more potent than the corresponding valine derivatives; (ii) no major difference in potency or efficacy was observed between tert-leucine/valine-derived amides and the corresponding methyl esters; however, phenylalanine analogs were affected by this change; and (iii) minor structural changes to the 4-pentenyl substituent had little influence on activity. These findings elucidate structural features that modulate the CB1 activation potential of currently prevalent SCRAs and a systematic panel of analogs, some of which may appear in NPS markets in future.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , beta-Arrestinas/metabolismo , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/química , Cannabinoides/síntesis química , Cannabinoides/química , Humanos , Indazoles/farmacología , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Receptor Cannabinoide CB1/agonistas , Relación Estructura-Actividad
12.
Drug Test Anal ; 13(7): 1383-1401, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33787091

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest and most structurally diverse classes of new psychoactive substances (NPS). Despite this, pharmacological data are often lacking following the identification of a new SCRA in drug markets. In this first of a three-part series, we describe the synthesis, analytical characterization, and binding affinity of a proactively generated, systematic library of 30 indole, indazole, and 7-azaindole SCRAs related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA featuring a 4-pentenyl (4en-P), butyl (B/BUT), or 4-cyanobutyl (4CN-B/BUT) tail and a methyl l-valinate (MMB), methyl l-tert-leucinate (MDMB), methyl l-phenylalaninate (MPP), l-valinamide (AB), l-tert-leucinamide (ADB), l-phenylalaninamide (APP), adamantyl (A), or cumyl head group. Competitive radioligand binding assays demonstrated that the indazole core conferred the highest CB1 binding affinity (Ki = 0.17-39 nM), followed by indole- (Ki = 0.95-160 nM) and then 7-azaindole-derived SCRAs (Ki = 5.4-271 nM). Variation of the head group had the greatest effect on binding, with tert-leucine amides and methyl esters (Ki = 0.17-14 nM) generally showing the greatest affinities, followed by valine derivatives (Ki = 0.72-180 nM), and then phenylalanine derivatives (Ki = 2.5-271 nM). Adamantyl head groups (Ki = 8.8-59 nM) were suboptimal for binding, whereas the cumyl analogues consistently conferred high affinity (Ki = 0.62-36 nM). Finally, both butyl (Ki = 3.1-163 nM) and 4-cyanobutyl (Ki = 5.5-44 nM) tail groups were less favorable for CB1 binding than their corresponding 4-pentenyl counterparts (Ki = 0.72-25 nM).


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Receptor Cannabinoide CB1/agonistas , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/química , Cannabinoides/síntesis química , Cannabinoides/química , Humanos , Indazoles/síntesis química , Indazoles/química , Indazoles/farmacología , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Ensayo de Unión Radioligante , Receptor Cannabinoide CB1/metabolismo , Relación Estructura-Actividad
13.
ACS Chem Neurosci ; 11(24): 4434-4446, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33253529

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances (NPS) with structurally diverse compounds emerging each year. Due to the rapid pace at which these drugs enter the market, there is often little or nil information regarding the pharmacology of these substances despite widespread human use. In this study, 12 recently emerged SCRAs (reported between 2018 and 2020) were synthesized, analytically characterized, and pharmacologically evaluated using a live cell-based nanoluciferase complementation reporter assay that monitors in vitro cannabinoid receptor type 1 (CB1) activation via its interaction with ß-arrestin 2 (ßarr2). All synthesized SCRAs acted as agonists of CB1, although differences in potency (EC50 = 2.33-5475 nM) and efficacy (Emax = 37-378%) were noted, and several structure-activity relationships were identified. SCRAs featuring indazole cores (EC50 = 2.33-159 nM) were generally of equal or greater potency than indole analogues (EC50 = 32.9-330 nM) or 7-azaindole derivatives (EC50 = 64.0-5475 nM). Interestingly, with the exception of APP-BINACA (Emax = 75.7%) and 5F-A-P7AICA (Emax = 37.4%), all SCRAs showed greater efficacy than the historical SCRA JWH-018 to which responses were normalized (Emax = 142-378%). The most potent CB1 agonists in the study were ADB-BINACA (EC50 = 6.36 nM), 4F-MDMB-BINACA (EC50 = 7.39 nM), and MDMB-4en-PINACA (EC50 = 2.33 nM). Notably, all of these SCRAs featured an indazole core as well as a "bulky" tert-butyl moiety in the pendant amino acid side chain. This study confirms that recently detected SCRAs 4F-MDMB-BICA, 5F-MPP-PICA, MMB-4en-PICA, CUMYL-CBMICA, ADB-BINACA, APP-BINACA, 4F-MDMB-BINACA, MDMB-4en-PINACA, A-CHMINACA, 5F-AB-P7AICA, 5F-MDMB-P7AICA, and 5F-AP7AICA were all able to activate the CB1 receptor in vitro, albeit to different extents, and are potentially psychoactive in vivo. These results indicate that further evaluation of these widely used NPS is warranted to better understand the risks associated with human consumption of these drugs.


Asunto(s)
Cannabinoides , Agonistas de Receptores de Cannabinoides , Fármacos del Sistema Nervioso Central , Humanos , Indazoles/farmacología , Receptor Cannabinoide CB1 , Receptores de Cannabinoides
14.
ACS Chem Neurosci ; 11(21): 3672-3682, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33054155

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) represent the most rapidly expanding class of new psychoactive substances (NPSs). Despite the prevalence and potency of recent chiral indole-3-carboxamide SCRAs, few pharmacological data are available regarding the enantiomeric bias of these NPSs toward human CB1 and CB2 receptors. A series of homochiral indole-3-carboxamides derived from (S)- and (R)-α-methylbenzylamine and featuring variation of the 1-alkyl substituent were prepared, pharmacologically evaluated, and compared to related achiral congeners derived from cumyl- and benzylamine. Competitive binding assays demonstrated that all analogues derived from either enantiomer of α-methylbenzylamine (14-17) showed affinities for CB1 (Ki = 47.9-813 nM) and CB2 (Ki = 47.9-347 nM) that were intermediate to that of the corresponding benzylic (10-13, CB1 Ki = 550 nM to >10 µM; CB2 Ki = 61.7 nM to >10 µM) and cumyl derivatives (6-9, CB1 Ki = 12.6-21.4 nM; CB2 Ki = 2.95-24.5 nM). In a fluorometric membrane potential assay, all α-methylbenzyl analogues (excluding 17) were potent, efficacious agonists of CB1 (EC50 = 32-464 nM; Emax = 89-104%) and low efficacy agonists of CB2 (EC50 = 54-500 nM; Emax = 52-77%), with comparable or greater potency than the benzyl analogues and much lower potency than the cumyl derivatives, consistent with binding trends. The relatively greater affinity and potency of (S)-14-17 compared to (R)-14-17 analogues at CB1 highlighted an enantiomeric bias for this series of SCRAs. Molecular dynamics simulations provided a conformational basis for the observed differences in agonist potency at CB1 pending benzylic substitution.


Asunto(s)
Cannabinoides , Amidas , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Humanos , Indoles , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Receptores de Cannabinoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA