Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Materials (Basel) ; 15(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36295283

RESUMEN

In our search for an optimum soft magnet with excellent mechanical properties which can be used in applications centered around "electro mobility", nanocrystalline CoCrFeNiGax (x = 0.5, 1.0) bulk high entropy alloys (HEA) were successfully produced by spark plasma sintering (SPS) at 1073 K of HEA powders produced by high energy ball milling (HEBM). SPS of non-equiatomic CoCrFeNiGa0.5 particles results in the formation of a single-phase fcc bulk HEA, while for the equiatomic CoCrFeNiGa composition a mixture of bcc and fcc phases was found. For both compositions SEM/EDX analysis showed a predominant uniform distribution of the elements with only a small number of Cr-rich precipitates. High pressure torsion (HPT) of the bulk samples led to an increased homogeneity and a grain refinement: i.e., the crystallite size of the single fcc phase of CoCrFeNiGa0.5 decreased by a factor of 3; the crystallite size of the bcc and fcc phases of CoCrFeNiGa-by a factor of 4 and 10, respectively. The lattice strains substantially increased by nearly the same extent. After HPT the saturation magnetization (Ms) of the fcc phase of CoCrFeNiGa0.5 and its Curie temperature increased by 17% (up to 35 Am2/kg) and 31.5% (from 95 K to 125 K), respectively, whereas the coercivity decreased by a factor of 6. The overall Ms of the equiatomic CoCrFeNiGa decreased by 34% and 55% at 10 K and 300 K, respectively. At the same time the coercivity of CoCrFeNiGa increased by 50%. The HPT treatment of SPS-consolidated HEAs increased the Vickers hardness (Hv) by a factor of two (up to 5.632 ± 0.188) only for the non-equiatomic CoCrFeNiGa0.5, while for the equiatomic composition, the Hv remained unchanged (6.343-6.425 GPa).

2.
Adv Mater ; 33(52): e2104878, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34601739

RESUMEN

2D transition metal carbides and nitrides (MXenes) open up novel opportunities in gas sensing with high sensitivity at room temperature. Herein, 2D Mo2 CTx flakes with high aspect ratio are successfully synthesized. The chemiresistive effect in a sub-µm MXene multilayer for different organic vapors and humidity at 101 -104  ppm in dry air is studied. Reasonably, the low-noise resistance signal allows the detection of H2 O down to 10 ppm. Moreover, humidity suppresses the response of Mo2 CTx to organic analytes due to the blocking of adsorption active sites. By measuring the impedance of MXene layers as a function of ac frequency in the 10-2 -106  Hz range, it is shown that operation principle of the sensor is dominated by resistance change rather than capacitance variations. The sensor transfer function allows to conclude that the Mo2 CTx chemiresistance is mainly originating from electron transport through interflake potential barriers with heights up to 0.2 eV. Density functional theory calculations, elucidating the Mo2 C surface interaction with organic analytes and H2 O, explain the experimental data as an energy shift of the density of states under the analyte's adsorption which induces increasing electrical resistance.

3.
Nanoscale ; 13(23): 10402-10413, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096958

RESUMEN

Solid solution AuFe nanoparticles were synthesized for the first time under ambient conditions by an adapted method previously established for the Fe3O4-Au core-shell morphology. These AuFe particles preserved the fcc structure of Au incorporated with paramagnetic Fe atoms. The metastable AuFe can be segregated by transformation into Janus Au/Fe particles with bcc Fe and fcc Au upon annealing. The ferromagnetic Fe was epitaxially grown on low index fcc Au planes. This preparation route delivers new perspective materials for magnetoplasmonics and biomedical applications and suggests the reconsideration of existing protocols for magnetite-gold core-shell synthesis.

4.
ACS Appl Mater Interfaces ; 13(18): 21602-21612, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33929817

RESUMEN

The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.

5.
Sci Rep ; 10(1): 2861, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071362

RESUMEN

Strong unidirectional anisotropy in bulk polycrystalline B20 FeGe has been measured by ferromagnetic resonance spectroscopy. Such anisotropy is not present in static magnetometry measurements. B20 FeGe exhibits inherent Dzyaloshinskii-Moriya interaction, resulting in a nonreciprocal spin-wave dispersion. Bulk and micron sized samples were produced and characterized. By X-band ferromagnetic resonance spectroscopy at 276 K ± 1 K, near the Curie temperature, a distribution of resonance modes was observed in accordance with the cubic anisotropy of FeGe. This distribution exhibits a unidirectional anisotropy, i.e. shift of the resonance field under field inversion, of KUD = 960 J/m3 ± 10 J/m3, previously unknown in bulk ferromagnets. Additionally, more than 25 small amplitude standing spin wave modes were observed inside a micron sized FeGe wedge, measured at 293 K ± 2 K. These modes also exhibit unidirectional anisotropy. This effect, only dynamically measurable and not detectable in static magnetometry measurements, may open new possibilities for directed spin transport in chiral magnetic systems.

6.
Beilstein J Nanotechnol ; 9: 2684-2699, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416920

RESUMEN

Size-selected Fe3O4-Au hybrid nanoparticles with diameters of 6-44 nm (Fe3O4) and 3-11 nm (Au) were prepared by high temperature, wet chemical synthesis. High-quality Fe3O4 nanocrystals with bulk-like magnetic behavior were obtained as confirmed by the presence of the Verwey transition. The 25 nm diameter Fe3O4-Au hybrid nanomaterial sample (in aqueous and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an extraordinarily high r 2-relaxivity of 495 mM-1·s-1 along with a specific loss power of 617 W·gFe -1 and 327 W·gFe -1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate exposure and after precultivation of the cells for 6 h with 25 nm Fe3O4-Au hybrid nanomaterials, respectively. This confirms that the improved magnetic properties of the bifunctional particles present a next step in magnetic-particle-based theranostics.

7.
Sci Rep ; 8(1): 11295, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050080

RESUMEN

High-quality, 25 nm octahedral-shaped Fe3O4 magnetite nanocrystals are epitaxially grown on 9 nm Au seed nanoparticles using a modified wet-chemical synthesis. These Fe3O4-Au Janus nanoparticles exhibit bulk-like magnetic properties. Due to their high magnetization and octahedral shape, the hybrids show superior in vitro and in vivo T2 relaxivity for magnetic resonance imaging as compared to other types of Fe3O4-Au hybrids and commercial contrast agents. The nanoparticles provide two functional surfaces for theranostic applications. For the first time, Fe3O4-Au hybrids are conjugated with two fluorescent dyes or the combination of drug and dye allowing the simultaneous tracking of the nanoparticle vehicle and the drug cargo in vitro and in vivo. The delivery to tumors and payload release are demonstrated in real time by intravital microscopy. Replacing the dyes by cell-specific molecules and drugs makes the Fe3O4-Au hybrids a unique all-in-one platform for theranostics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Óxido Ferrosoférrico/administración & dosificación , Oro/administración & dosificación , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Himenópteros , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Soluciones para Nutrición Parenteral
8.
Sci Rep ; 8(1): 2637, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422618

RESUMEN

In 2013, a new class of inherently nanolaminated magnetic materials, the so called magnetic MAX phases, was discovered. Following predictive material stability calculations, the hexagonal Mn2GaC compound was synthesized as hetero-epitaxial films containing Mn as the exclusive M-element. Recent theoretical and experimental studies suggested a high magnetic ordering temperature and non-collinear antiferromagnetic (AFM) spin states as a result of competitive ferromagnetic and antiferromagnetic exchange interactions. In order to assess the potential for practical applications of Mn2GaC, we have studied the temperature-dependent magnetization, and the magnetoresistive, magnetostrictive as well as magnetocaloric properties of the compound. The material exhibits two magnetic phase transitions. The Néel temperature is T N ~ 507 K, at which the system changes from a collinear AFM state to the paramagnetic state. At T t = 214 K the material undergoes a first order magnetic phase transition from AFM at higher temperature to a non-collinear AFM spin structure. Both states show large uniaxial c-axis magnetostriction of 450 ppm. Remarkably, the magnetostriction changes sign, being compressive (negative) above T t and tensile (positive) below the T t . The sign change of the magnetostriction is accompanied by a sign change in the magnetoresistance indicating a coupling among the spin, lattice and electrical transport properties.

9.
Nanotechnology ; 27(36): 365704, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479573

RESUMEN

The use of 3d transition metal-based magnetic nanowires (NWs) for permanent magnet applications requires large magnetocrystalline anisotropy energy (MAE), which in combination with the NWs' magnetic shape anisotropy yields magnetic hardening and an enhancement of the magnetic energy product. Here, we report on the significant increase in MAE by 125 kJ m(-3) in Fe30Co70 NWs with diameters of 20-150 nm embedded in anodic aluminum oxide templates by adding 5 at.% Cu and subsequent annealing at 900 K. Ferromagnetic resonance (FMR) reveals that this enhancement of MAE is twice as large as the enhancement of MAE in annealed, but undoped NWs. X-ray diffraction (XRD) analysis suggests that upon annealing the immiscible Cu in FeCo NWs causes a crystal reorientation with respect to the NW axis with a considerable distortion of the bcc FeCo lattice. This strain is most likely the origin of the strongly enhanced MAE.

10.
Nanotechnology ; 26(41): 415704, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26404670

RESUMEN

3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 µm and 7.5 µm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

11.
Sci Rep ; 5: 12940, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26260698

RESUMEN

A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.


Asunto(s)
Separación Celular/métodos , Eritrocitos/metabolismo , Macrófagos/citología , Bazo/citología , Animales , Recuento de Células Sanguíneas , Linaje de la Célula , Óxido Ferrosoférrico/efectos adversos , Óxido Ferrosoférrico/química , Citometría de Flujo , Humanos , Hígado/citología , Macrófagos/metabolismo , Ratones , Fagocitosis , Bazo/metabolismo
12.
Langmuir ; 30(15): 4474-82, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24720393

RESUMEN

Cobalt nanoparticles with different sizes and morphologies including spheres, rods, disks, and hexagonal prisms have been synthesized through the decomposition of the olefinic precursor [Co(η(3)-C8H13)(η(4)-C8H12)] under dihydrogen, in the presence of hexadecylamine and different rhodamine derivatives, or aromatic carboxylic acids. UV-vis spectroscopy, X-ray diffraction, low and high resolution transmission electron microscopy, and electron tomography have been used to characterize the nanomaterials. Especially, the Co nanodisks formed present characteristics that make them ideal nanocrystals for applications such as magnetic data storage. Focusing on their growth process, we have evidenced that a reaction between hexadecylamine and rhodamine B occurs during the formation of these Co nanodisks. This reaction limits the amount of free acid and amine, usually at the origin of the formation of single crystal Co rods and wires, in the growth medium of the nanocrystals. As a consequence, a growth mechanism based on the structure of the preformed seeds rather than oriented attachment or template assisted growth is postulated to explain the formation of the nanodisks.

13.
Nano Lett ; 14(2): 640-7, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24467516

RESUMEN

Cobalt oxide octahedra were synthesized by thermal decomposition. Each octahedron-shaped nanoparticle consists of an antiferromagnetic CoO core enclosed by eight {111} facets interfaced to a thin (∼ 4 nm) surface layer of strained Co3O4. The nearly perfectly octahedral shaped particles with 20, 40, and 85 nm edge length show a weak room-temperature ferromagnetism that can be attributed to ferromagnetic correlations appearing due to strained lattice configurations at the CoO/Co3O4 interface.

14.
Nat Commun ; 2: 528, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22068595

RESUMEN

Magnetic nanoparticles are of immense current interest because of their possible use in biomedical and technological applications. Here we demonstrate that the large magnetic anisotropy of FePt nanoparticles can be significantly modified by surface design. We employ X-ray absorption spectroscopy offering an element-specific approach to magnetocrystalline anisotropy and the orbital magnetism. Experimental results on oxide-free FePt nanoparticles embedded in Al are compared with large-scale density functional theory calculations of the geometric- and spin-resolved electronic structure, which only recently have become possible on world-leading supercomputer architectures. The combination of both approaches yields a more detailed understanding that may open new ways for a microscopic design of magnetic nanoparticles and allows us to present three rules to achieve desired magnetic properties. In addition, concrete suggestions of capping materials for FePt nanoparticles are given for tailoring both magnetocrystalline anisotropy and magnetic moments.


Asunto(s)
Magnetismo , Nanopartículas del Metal/química , Nanotecnología/métodos , Anisotropía , Hierro/química , Platino (Metal)/química
15.
Phys Chem Chem Phys ; 12(33): 9858-66, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20574593

RESUMEN

Nanoscale copper was selectively photodeposited onto the surface of hexadecylamine (HDA) stabilized (monodispersed not agglomerated) ZnO nanoparticles (NPs) of a diameter of 2-5 nm, which leads to HDA-stabilized Cu/ZnO NPs of varied Cu loading. The particles are soluble in non-polar organic solvents. The line broadening and the red shift of the surface plasmon band of Cu/ZnO NPs relative to HDA-stabilized Cu NPs, the profound decrease of the Cu/ZnO NPs visible photoluminescence at 525 nm, the increase of the UV emission intensity at 365 nm and the enhancement of the Raman scattering (RS) intensity in comparison to the parent ZnO NPs confirmed the interfacial contact between the Cu and ZnO phase.

16.
Nanotechnology ; 20(33): 335301, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19636098

RESUMEN

We propose an experimental technique that allows us a straightforward and reliable fabrication of magnetic and electromechanical nanodevices for single particle detection and characterization. We demonstrate three different experimental methods for fabrication of nanoscale devices consisting of either single or multiwall carbon nanotubes bridging metallic electrodes and decorated with magnetic iron/iron oxide nanocubes with a size of 18 nm. Electrical characterization of the devices as well as structural and magnetic investigations of nanoparticles are reported. In particular, the proposed method based on measurements of the magnetic resonance in a single nanoparticle will enable dynamic magnetic resonance measurements on a single magnetic nanoparticle with a moment of approximately 10(5) mu(B) that are not feasible using conventional experimental techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA