Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Life (Basel) ; 11(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919270

RESUMEN

Ca2+ homeostasis and signaling disturbances are associated with lens pathophysiology and are involved in cataract formation. Here, we explored the spatiotemporal changes in Ca2+ signaling in lens epithelial cells (LECs) upon local mechanical stimulation, to better understand the LECs' intercellular communication and its association with cataractogenesis. We were interested in if the progression of the cataract affects the Ca2+ signaling and if modifications of the Ca2+ homeostasis in LECs are associated with different cataract types. Experiments were done on the human postoperative anterior lens capsule (LC) preparations consisting of the monolayer of LECs on the basement membrane. Our findings revealed that the Ca2+ signal spreads radially from the stimulation point and that the amplitude of Ca2+ transients decreases with increasing distance. It is noteworthy that a comparison of signaling characteristics with respect to the degree of cataract progression revealed that, in LCs from more developed cataracts, the Ca2+ wave propagates faster and the amplitudes of Ca2+ signals are lower, while their durations are longer. No differences were identified when comparing LCs with regard to the cataract type. Moreover, experiments with Apyrase have revealed that the Ca2+ signals are not affected by ATP-dependent paracrine communication. Our results indicated that cataract progression is associated with modifications in Ca2+ signaling in LECs, suggesting the functional importance of altered Ca2+ signaling of LECs in cataractogenesis.

2.
BMC Med Genomics ; 12(1): 54, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987631

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the leading causes of death by cancer worldwide and in need of novel potential diagnostic biomarkers for early discovery. METHODS: We conducted a two-step study. We first employed bioinformatics on data from The Cancer Genome Atlas to obtain potential biomarkers and then experimentally validated some of them on our clinical samples. Our aim was to find a methylation alteration common to all clusters, with the potential of becoming a diagnostic biomarker in CRC. RESULTS: Unsupervised clustering of methylation data resulted in four clusters, none of which had a known common genetic or epigenetic event, such as mutations or methylation. The intersect among clusters and regulatory regions resulted in 590 aberrantly methylated probes, belonging to 198 differentially expressed genes. After performing pathway and functional analysis on differentially expressed genes, we selected six genes: CEP55, FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5, for further experimental validation on our own clinical samples. In silico analysis demonstrated that CEP55 was hypomethylated in 98.7% and up-regulated in 95.0% of samples. Genes FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5 were hypermethylated in 97.9, 81.1, 80.3, 98.4 and 94.0%, and down-regulated in 98.3, 98.9, 98.1, 98.1 and 98.6% of samples, respectively. Our experimental data show CEP55 was hypomethylated in 97.3% of samples and down-regulated in all samples, while FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5 were hypermethylated in 100.0, 90.2, 100.0, 99.1 and 100.0%, and down-regulated in 68.0, 76.0, 96.0, 95.2 and 84.0% of samples, respectively. Results of in silico and our experimental analyses showed that more than 97% of samples had at least four methylation markers altered. CONCLUSIONS: Using bioinformatics followed by experimental validation, we identified a set of six genes that were differentially expressed in CRC compared to normal mucosa and whose expression seems to be methylation dependent. Moreover, all of these six genes were common in all methylation clusters and mutation statuses of CRC and as such are believed to be an early event in human CRC carcinogenesis and to represent potential CRC biomarkers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Canal de Potasio Kv1.5/genética , Adulto , Proteínas de Ciclo Celular/genética , Biología Computacional , Metilación de ADN , Femenino , Factores de Transcripción Forkhead/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Receptores AMPA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA