Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Neurol ; 92(3): 476-485, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703428

RESUMEN

OBJECTIVE: Patients with myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) suffer from severe optic neuritis (ON) leading to retinal neuro-axonal loss, which can be quantified by optical coherence tomography (OCT). We assessed whether ON-independent retinal atrophy can be detected in MOGAD. METHODS: Eighty patients with MOGAD and 139 healthy controls (HCs) were included. OCT data was acquired with (1) Spectralis spectral domain OCT (MOGAD: N = 66 and HCs: N = 103) and (2) Cirrus high-definition OCT (MOGAD: N = 14 and HCs: N = 36). Macular combined ganglion cell and inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) were quantified. RESULTS: At baseline, GCIPL and pRNFL were lower in MOGAD eyes with a history of ON (MOGAD-ON) compared with MOGAD eyes without a history of ON (MOGAD-NON) and HCs (p < 0.001). MOGAD-NON eyes had lower GCIPL volume compared to HCs (p < 0.001) in the Spectralis, but not in the Cirrus cohort. Longitudinally (follow-up up to 3 years), MOGAD-ON with ON within the last 6-12 months before baseline exhibited greater pRNFL thinning than MOGAD-ON with an ON greater than 12 months ago (p < 0.001). The overall MOGAD cohort did not exhibit faster GCIPL thinning compared with the HC cohort. INTERPRETATION: Our study suggests the absence of attack-independent retinal damage in patients with MOGAD. Yet, ongoing neuroaxonal damage or edema resolution seems to occur for up to 12 months after ON, which is longer than what has been reported with other ON forms. These findings support that the pathomechanisms underlying optic nerve involvement and the evolution of OCT retinal changes after ON is distinct in patients with MOGAD. ANN NEUROL 2022;92:476-485.


Asunto(s)
Síndromes de Inmunodeficiencia/complicaciones , Glicoproteína Mielina-Oligodendrócito/inmunología , Neuritis Óptica/complicaciones , Degeneración Retiniana/etiología , Estudios de Casos y Controles , Estudios de Cohortes , Humanos , Estudios Longitudinales , Neuritis Óptica/diagnóstico por imagen , Neuritis Óptica/etiología , Retina/diagnóstico por imagen , Neuronas Retinianas , Tomografía de Coherencia Óptica/métodos
2.
J Neurol Neurosurg Psychiatry ; 93(2): 188-195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34711650

RESUMEN

BACKGROUND: Patients with anti-aquaporin-4 antibody seropositive (AQP4-IgG+) neuromyelitis optica spectrum disorders (NMOSDs) frequently suffer from optic neuritis (ON) leading to severe retinal neuroaxonal damage. Further, the relationship of this retinal damage to a primary astrocytopathy in NMOSD is uncertain. Primary astrocytopathy has been suggested to cause ON-independent retinal damage and contribute to changes particularly in the outer plexiform layer (OPL) and outer nuclear layer (ONL), as reported in some earlier studies. However, these were limited in their sample size and contradictory as to the localisation. This study assesses outer retinal layer changes using optical coherence tomography (OCT) in a multicentre cross-sectional cohort. METHOD: 197 patients who were AQP4-IgG+ and 32 myelin-oligodendrocyte-glycoprotein antibody seropositive (MOG-IgG+) patients were enrolled in this study along with 75 healthy controls. Participants underwent neurological examination and OCT with central postprocessing conducted at a single site. RESULTS: No significant thinning of OPL (25.02±2.03 µm) or ONL (61.63±7.04 µm) were observed in patients who were AQP4-IgG+ compared with patients who were MOG-IgG+ with comparable neuroaxonal damage (OPL: 25.10±2.00 µm; ONL: 64.71±7.87 µm) or healthy controls (OPL: 24.58±1.64 µm; ONL: 63.59±5.78 µm). Eyes of patients who were AQP4-IgG+ (19.84±5.09 µm, p=0.027) and MOG-IgG+ (19.82±4.78 µm, p=0.004) with a history of ON showed parafoveal OPL thinning compared with healthy controls (20.99±5.14 µm); this was not observed elsewhere. CONCLUSION: The results suggest that outer retinal layer loss is not a consistent component of retinal astrocytic damage in AQP4-IgG+ NMOSD. Longitudinal studies are necessary to determine if OPL and ONL are damaged in late disease due to retrograde trans-synaptic axonal degeneration and whether outer retinal dysfunction occurs despite any measurable structural correlates.


Asunto(s)
Acuaporina 4/sangre , Neuromielitis Óptica/fisiopatología , Retina/fisiopatología , Adulto , Astrocitos/patología , Autoanticuerpos , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Coherencia Óptica
3.
Artículo en Inglés | MEDLINE | ID: mdl-34526385

RESUMEN

BACKGROUND AND OBJECTIVES: To determine optic nerve and retinal damage in aquaporin-4 antibody (AQP4-IgG)-seropositive neuromyelitis optica spectrum disorders (NMOSD) in a large international cohort after previous studies have been limited by small and heterogeneous cohorts. METHODS: The cross-sectional Collaborative Retrospective Study on retinal optical coherence tomography (OCT) in neuromyelitis optica collected retrospective data from 22 centers. Of 653 screened participants, we included 283 AQP4-IgG-seropositive patients with NMOSD and 72 healthy controls (HCs). Participants underwent OCT with central reading including quality control and intraretinal segmentation. The primary outcome was thickness of combined ganglion cell and inner plexiform (GCIP) layer; secondary outcomes were thickness of peripapillary retinal nerve fiber layer (pRNFL) and visual acuity (VA). RESULTS: Eyes with ON (NMOSD-ON, N = 260) or without ON (NMOSD-NON, N = 241) were assessed compared with HCs (N = 136). In NMOSD-ON, GCIP layer (57.4 ± 12.2 µm) was reduced compared with HC (GCIP layer: 81.4 ± 5.7 µm, p < 0.001). GCIP layer loss (-22.7 µm) after the first ON was higher than after the next (-3.5 µm) and subsequent episodes. pRNFL observations were similar. NMOSD-NON exhibited reduced GCIP layer but not pRNFL compared with HC. VA was greatly reduced in NMOSD-ON compared with HC eyes, but did not differ between NMOSD-NON and HC. DISCUSSION: Our results emphasize that attack prevention is key to avoid severe neuroaxonal damage and vision loss caused by ON in NMOSD. Therapies ameliorating attack-related damage, especially during a first attack, are an unmet clinical need. Mild signs of neuroaxonal changes without apparent vision loss in ON-unaffected eyes might be solely due to contralateral ON attacks and do not suggest clinically relevant progression but need further investigation.


Asunto(s)
Acuaporina 4/inmunología , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/patología , Neuritis Óptica/inmunología , Neuritis Óptica/patología , Neuronas Retinianas/patología , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuromielitis Óptica/diagnóstico por imagen , Neuritis Óptica/diagnóstico por imagen , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Adulto Joven
4.
BMJ Open ; 10(10): e035397, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122310

RESUMEN

PURPOSE: Optical coherence tomography (OCT) captures retinal damage in neuromyelitis optica spectrum disorders (NMOSD). Previous studies investigating OCT in NMOSD have been limited by the rareness and heterogeneity of the disease. The goal of this study was to establish an image repository platform, which will facilitate neuroimaging studies in NMOSD. Here we summarise the profile of the Collaborative OCT in NMOSD repository as the initial effort in establishing this platform. This repository should prove invaluable for studies using OCT to investigate NMOSD. PARTICIPANTS: The current cohort includes data from 539 patients with NMOSD and 114 healthy controls. These were collected at 22 participating centres from North and South America, Asia and Europe. The dataset consists of demographic details, diagnosis, antibody status, clinical disability, visual function, history of optic neuritis and other NMOSD defining attacks, and OCT source data from three different OCT devices. FINDINGS TO DATE: The cohort informs similar demographic and clinical characteristics as those of previously published NMOSD cohorts. The image repository platform and centre network continue to be available for future prospective neuroimaging studies in NMOSD. For the conduct of the study, we have refined OCT image quality criteria and developed a cross-device intraretinal segmentation pipeline. FUTURE PLANS: We are pursuing several scientific projects based on the repository, such as analysing retinal layer thickness measurements, in this cohort in an attempt to identify differences between distinct disease phenotypes, demographics and ethnicities. The dataset will be available for further projects to interested, qualified parties, such as those using specialised image analysis or artificial intelligence applications.


Asunto(s)
Neuromielitis Óptica , Inteligencia Artificial , Asia , Europa (Continente) , Humanos , Neuromielitis Óptica/diagnóstico por imagen , América del Sur , Tomografía de Coherencia Óptica , Agudeza Visual
5.
Acta Neurol Scand ; 138(6): 566-573, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30109704

RESUMEN

OBJECTIVES: To measure early structural damage caused by autoimmune inflammatory optic neuritis (ON) by optical coherence tomography (OCT) in a population-based cohort. METHODS: In a prospective population-based study over 24 months in Southern Denmark, patients diagnosed with acute ON and without prior diagnosis of a chronic neuroinflammatory disorder were included and examined with OCT, visual evoked potentials (VEP), visual fields, high contrast visual acuity (HCVA), and low contrast letter acuity (LCLA). Structural and functional outcomes were determined at 6-month follow-up based on interocular differences. RESULTS: The 50 included patients had on average 16.9 µm peripapillary retinal nerve fiber layer loss, 10.6 µm ganglion cell and inner plexiform layer (GCIP) loss, and an average HCVA decrease of 0.22 dec. Based on a linear regression model, average GCIP loss amounted to -0.2 µm per day and started 8 days after onset. OCT outcomes but not VEP correlated well with all visual function measurements at follow-up. Structural and functional damage in 20 patients (40%) diagnosed de novo with multiple sclerosis (MS) and in 2 patients (4%) with positive myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) test did not differ from patients with idiopathic ON. CONCLUSIONS: Optic neuritis causes substantial retinal damage and vision loss independent of the underlying disease. Our study supports that GCIP damage starts closely to clinical onset. Good structure-function correlations between OCT and vision support the importance of OCT in monitoring acute ON.


Asunto(s)
Neuritis Óptica/diagnóstico por imagen , Neuritis Óptica/patología , Tomografía de Coherencia Óptica/métodos , Adulto , Dinamarca , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
6.
JAMA Neurol ; 75(9): 1071-1079, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710121

RESUMEN

Importance: Clinically isolated syndrome (CIS) describes a first clinical incident suggestive of multiple sclerosis (MS). Identifying patients with CIS who have a high risk of future disease activity and subsequent MS diagnosis is crucial for patient monitoring and the initiation of disease-modifying therapy. Objective: To investigate the association of retinal optical coherence tomography (OCT) results with future disease activity in patients with CIS. Design, Setting, and Participants: This prospective, longitudinal cohort study took place between January 2011 and May 2017 at 2 German tertiary referral centers. A total of 179 patients with CIS were screened (80 in Berlin and 99 in Munich). Patients underwent neurological examination, magnetic resonance imaging (MRI), and OCT. Only eyes with no previous optic neuritis were considered for OCT analysis. Main Outcomes and Measures: The primary outcome was not meeting the no evidence of disease activity (NEDA-3) criteria; secondary outcomes were MS diagnosis (by the 2010 McDonald criteria) and worsening of disability. The primary measure was OCT-derived ganglion cell and inner plexiform layer thickness; the secondary measures included peripapillary retinal nerve fiber layer thickness, inner nuclear layer thickness, and MRI-derived T2-weighted lesions. Results: A total of 97 of the 179 screened patients (54.2%) were enrolled in the study at a median of 93 (interquartile range [IQR], 62-161) days after a first demyelinating event. The median follow-up duration (Kaplan-Meier survival time) was 729 (IQR, 664-903) days. Of 97 patients with CIS (mean age 33.6 [7.9] years; 61 [62.9%] female), 58 (59%) did not meet NEDA-3 criteria during the follow-up period. A Kaplan-Meier analysis showed a significant probability difference in not meeting NEDA-3 criteria by ganglion cell and inner plexiform later thickness (thinnest vs thickest tertile: hazard ratio [HR], 3.33 [95% CI, 1.70-6.55; P < .001; log-rank P = .001). A follow-up diagnosis of MS was more likely for patients with low ganglion cell and inner plexiform layer thickness (thinnest vs thickest tertile: HR, 4.05 [95% CI, 1.93-8.50]; P < .001). Low peripapillary retinal nerve fiber layer thickness likewise indicated risk of not meeting NEDA-3 criteria (thinnest vs thickest tertile: HR, 2.46 [95% CI, 1.29-4.66]; P = .01; log-rank P = .02). Inner nuclear layer thickness and T2-weighted lesion count were not associated with not meeting NEDA-3 criteria. Conclusions and Relevance: Retinal ganglion cell and inner plexiform layer thickness might prove a valuable imaging marker for anticipating future disease activity and diagnosis of MS in patients with CIS, which can potentially support patient monitoring and initiation of disease-modifying therapy.


Asunto(s)
Enfermedades Desmielinizantes/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica , Adulto , Biomarcadores , Enfermedades Desmielinizantes/patología , Diagnóstico Precoz , Femenino , Humanos , Estudios Longitudinales , Masculino , Esclerosis Múltiple/patología , Estudios Prospectivos , Factores de Riesgo , Adulto Joven
7.
Mult Scler Relat Disord ; 22: 141-147, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29704802

RESUMEN

BACKGROUND: To identify the extent of ganglion cell damage after first-time optic neuritis (ON) using the inter-ocular difference between affected and fellow eyes, and whether this approach is able to detect more patients suffering from ganglion cell damage than using absolute values. METHODS: Thirty-four patients with first-time unilateral ON were followed for a median 413 days. Patients underwent optical coherence tomography testing to determine ganglion cell plus inner plexiform layer thickness (GCIP). Ganglion cell loss was quantified as GCIP difference between ON-affected and fellow eyes (inter-GCIP) and was compared against measurements from 93 healthy controls (HC). Visual function was assessed with high contrast visual acuity; and standard automated perimetry-derived measures of mean deviation and foveal threshold. RESULTS: At clinical presentation after median 19 days from symptom onset, 47.1% of patients showed early GCIP thinning in the ON-affected eye based on inter-GCIP. At the last visit acute ON was associated with 16.1 ±â€¯10.0 µm GCIP thinning compared to fellow eyes (p = 3.669e-06). Based on inter-GCIP, 84.9% of ON patients sustained GCIP thinning in their affected eye at the last visit, whereas using absolute values only 71.0% of patients suffered from GCIP thinning (p = 0.002076). Only 32.3% of these patients had abnormal visual function. The best predictor of GCIP thinning as a measure of ON severity at the last visit was worse visual field mean deviation at clinical presentation. CONCLUSION: Inter-ocular GCIP identifies significantly more eyes suffering damage from ON than absolute GCIP, visual fields or visual acuity loss. Effective interventional options are needed to prevent ganglion cell loss.


Asunto(s)
Neuritis Óptica/diagnóstico por imagen , Neuritis Óptica/patología , Células Ganglionares de la Retina/patología , Adulto , Muerte Celular , Femenino , Estudios de Seguimiento , Humanos , Masculino , Análisis Multivariante , Tamaño de los Órganos , Pronóstico , Tomografía de Coherencia Óptica , Agudeza Visual
9.
Stud Health Technol Inform ; 175: 173-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942008

RESUMEN

Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Internet , Neurorradiografía/métodos , Sistemas de Información Radiológica , Programas Informáticos , Interfaz Usuario-Computador , Investigación sobre Servicios de Salud/métodos , Difusión de la Información/métodos
10.
Stud Health Technol Inform ; 159: 159-70, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20543435

RESUMEN

Recent developments in MRI contrast agents give new perspectives in radiological diagnosis and therapy planning, but require specific image analysis methods. By employment of an academic research grid, we are currently validating and optimizing a recently developed fully automatic method for liver segmentation in Gd-EOB enhanced MRI. The grid enables extensive parameter scans and evaluation against expert's reference segmentation. The implementation layout and so far reached results are presented. Furthermore, experiences made in the production phase and consequences resulting for the exploitation of publicly funded research grids for Healthgrid applications are given.


Asunto(s)
Abdomen , Procesamiento de Imagen Asistido por Computador , Hepatopatías/diagnóstico , Imagen por Resonancia Magnética , Aumento de la Imagen , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA