Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Anal Chem ; 96(16): 6311-6320, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594017

RESUMEN

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Asunto(s)
Glicoesfingolípidos , Hígado , Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Hígado/metabolismo , Hígado/parasitología , Cricetinae , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Mesocricetus , Cromatografía Liquida , Masculino
2.
PNAS Nexus ; 3(4): pgae104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562583

RESUMEN

Schistosomiasis, a widespread neglected tropical disease, presents a complex and multifaceted clinical-pathological profile. Using hamsters as final hosts, we dissected molecular events following Schistosoma mansoni infection in the liver-the organ most severely affected in schistosomiasis patients. Employing tandem mass tag-based proteomics, we studied alterations in the liver proteins in response to various infection modes and genders. We examined livers from female and male hamsters that were: noninfected (control), infected with either unisexual S. mansoni cercariae (single-sex) or both sexes (bisex). The infection induced up-regulation of proteins associated with immune response, cytoskeletal reorganization, and apoptotic signaling. Notably, S. mansoni egg deposition led to the down-regulation of liver factors linked to energy supply and metabolic processes. Gender-specific responses were observed, with male hamsters showing higher susceptibility, supported by more differentially expressed proteins than found in females. Of note, metallothionein-2 and S100a6 proteins exhibited substantial up-regulation in livers of both genders, suggesting their pivotal roles in the liver's injury response. Immunohistochemistry and real-time-qPCR confirmed strong up-regulation of metallothionein-2 expression in the cytoplasm and nucleus upon the infection. Similar findings were seen for S100a6, which localized around granulomas and portal tracts. We also observed perturbations in metabolic pathways, including down-regulation of enzymes involved in xenobiotic biotransformation, cellular energy metabolism, and lipid modulation. Furthermore, lipidomic analyses through liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging identified extensive alterations, notably in cardiolipin and triacylglycerols, suggesting specific roles of lipids during pathogenesis. These findings provide unprecedented insights into the hepatic response to S. mansoni infection, shedding light on the complexity of liver pathology in this disease.

3.
iScience ; 26(9): 107565, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664630

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.

4.
Biomolecules ; 13(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627264

RESUMEN

Cryptosporidium parvum is a zoonotic-relevant parasite belonging to the phylum Alveolata (subphylum Apicomplexa). One of the most zoonotic-relevant etiologies of cryptosporidiosis is the species C. parvum, infecting humans, cattle and wildlife. C. parvum-infected intestinal mucosa as well as host cells infected in vitro have not yet been the subject of extensive biochemical investigation. Efficient treatment options or vaccines against cryptosporidiosis are currently not available. Human cryptosporidiosis is currently known as a neglected poverty-related disease (PRD), being potentially fatal in young children or immunocompromised patients. In this study, we used a combination of atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) mass spectrometry imaging (MSI) and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine and locate molecular biomarkers in in vitro C. parvum-infected host cells as well as parasitized neonatal calf intestines. Sections of C. parvum-infected and non-infected host cell pellets and infected intestines were examined to determine potential biomarkers. Human ileocecal adenocarcinoma cells (HCT-8) were used as a suitable in vitro host cell system. More than a thousand different molecular signals were found in both positive- and negative-ion mode, which were significantly increased in C. parvum-infected material. A database search in combination with HPLC-MS/MS experiments was employed for the structural verification of markers. Our results demonstrate some overlap between the identified markers and data obtained from earlier studies on other apicomplexan parasites. Statistically relevant biomarkers were imaged in cell layers of C. parvum-infected and non-infected host cells with 5 µm pixel size and in bovine intestinal tissue with 10 µm pixel size. This allowed us to substantiate their relevance once again. Taken together, the present approach delivers novel metabolic insights on neglected cryptosporidiosis affecting mainly children in developing countries.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Niño , Humanos , Animales , Bovinos , Preescolar , Espectrometría de Masas en Tándem , Diagnóstico por Imagen
5.
Anal Chem ; 95(31): 11672-11679, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506282

RESUMEN

Microglia are non-neuronal cells, which reside in the central nervous system and are known to play an important role in health and disease. We investigated the lipidomic phenotypes of human naïve and stimulated microglia-like cells by atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI). With lateral resolutions between 5 and 1.5 µm pixel size, we were able to chart lipid compositions of individual cells, enabling differentiation of cell lines and stimulation conditions. This allowed us to reveal local lipid heterogeneities in naïve and lipopolysaccharide (LPS)-stimulated cells. We were able to identify individual cells with elevated triglyceride (TG) levels and could show that the number of these TG-enriched cells increased with LPS stimulation as a hallmark for a proinflammatory phenotype. Additionally, the observed local abundance alterations of specific phosphatidylinositols (PIs) indicate a cell specific regulation of the PI metabolism.


Asunto(s)
Lipopolisacáridos , Microglía , Humanos , Lipopolisacáridos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fosfatidilinositoles , Diferenciación Celular
6.
J Agric Food Chem ; 71(21): 8112-8120, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37196237

RESUMEN

Odor-active fatty aldehydes are important compounds for the flavor and fragrance industry. By a coupled enzymatic reaction using an α-dioxygenase (α-DOX) and an aldehyde dehydrogenase (FALDH), scarcely available aldehydes from the biotransformation of margaroleic acid [17:1(9Z)] were characterized and have shown highly interesting odor profiles, including citrus-like, soapy, herbaceous, and savory notes. In particular, (Z)-8-hexadecenal and (Z)-7-pentadecenal exhibited notable meaty odor characteristics. Submerged cultivation of Mortierella hyalina revealed the accumulation of the above-mentioned, naturally uncommon fatty acid 17:1(9Z). Its production was significantly increased by the modulation of culture conditions, whereas the highest accumulation was observed after 4 days at 24 °C and l-isoleucine supplementation. The lipase-, α-DOX-, and FALDH-mediated biotransformation of M. hyalina lipid extract resulted in a complex aldehyde mixture with a high aldehyde yield of ∼50%. The odor qualities of the formed aldehydes were assessed by means of gas chromatography-olfactometry, and several of the obtained fatty aldehydes have been sensorially described for the first time. To assess the aldehyde mixture's potential as a flavor ingredient, a sensory evaluation was conducted. The obtained product exhibited intense citrus-like, green, and soapy odor impressions.


Asunto(s)
Dioxigenasas , Odorantes , Odorantes/análisis , Aldehídos/metabolismo , Ácidos Grasos/metabolismo , Cromatografía de Gases
7.
Biomolecules ; 13(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37189397

RESUMEN

The comprehensive identification of the proteome content from a white wine (cv. Silvaner) is described here for the first time. The wine protein composition isolated from a representative wine sample (250 L) was identified via mass spectrometry (MS)-based proteomics following in-solution and in-gel digestion methods after being submitted to size exclusion chromatographic (SEC) fractionation to gain a comprehensive insight into proteins that survive the vinification processes. In total, we identified 154 characterized (with described functional information) or so far uncharacterized proteins, mainly from Vitis vinifera L. and Saccharomyces cerevisiae. With the complementarity of the two-step purification, the digestion techniques and the high-resolution (HR)-MS analyses provided a high-score identification of proteins from low to high abundance. These proteins can be valuable for future authentication of wines by tracing proteins derived from a specific cultivar or winemaking process. The proteomics approach presented herein may also be generally helpful to understand which proteins are important for the organoleptic properties and stability of wines.


Asunto(s)
Vitis , Vino , Vino/análisis , Proteómica/métodos , Vitis/química , Espectrometría de Masas , Saccharomyces cerevisiae , Proteoma/metabolismo
8.
Biomolecules ; 13(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36979386

RESUMEN

Thermolabile grape berry proteins such as thaumatin-like proteins (TLPs) and chitinases (CHIs) promote haze formation in bottled wines if not properly fined. As a natural grapevine pest, the spotted-wing fly Drosophila suzukii is a promising source of peptidases that break down grape berry proteins because the larvae develop and feed inside mature berries. Therefore, we produced recombinant TLP and CHI as model thermolabile wine haze proteins and applied a peptidomics strategy to investigate whether D. suzukii larval peptidases were able to digest them under acidic conditions (pH 3.5), which are typically found in winemaking practices. The activity of the novel peptidases was confirmed by mass spectrometry, and cleavage sites within the wine haze proteins were visualized in 3D protein models. The combination of recombinant haze proteins and peptidomics provides a valuable screening tool to identify optimal peptidases suitable for clarification processes in the winemaking industry.


Asunto(s)
Vitis , Vino , Animales , Vino/análisis , Drosophila/metabolismo , Larva/metabolismo , Vitis/química , Proteínas de Plantas/metabolismo
9.
Mol Ecol Resour ; 23(6): 1195-1210, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36941779

RESUMEN

Although being famous for sequestering milkweed cardenolides, the mechanism of sequestration and where cardenolides are localized in caterpillars of the monarch butterfly (Danaus plexippus, Lepidoptera: Danaini) is still unknown. While monarchs tolerate cardenolides by a resistant Na+ /K+ -ATPase, it is unclear how closely related species such as the nonsequestering common crow butterfly (Euploea core, Lepidoptera: Danaini) cope with these toxins. Using novel atmospheric-pressure scanning microprobe matrix-assisted laser/desorption ionization mass spectrometry imaging, we compared the distribution of cardenolides in caterpillars of D. plexippus and E. core. Specifically, we tested at which physiological scale quantitative differences between both species are mediated and how cardenolides distribute across body tissues. Whereas D. plexippus sequestered most cardenolides from milkweed (Asclepias curassavica), no cardenolides were found in the tissues of E. core. Remarkably, quantitative differences already manifest in the gut lumen: while monarchs retain and accumulate cardenolides above plant concentrations, the toxins are degraded in the gut lumen of crows. We visualized cardenolide transport over the monarch midgut epithelium and identified integument cells as the final site of storage where defences might be perceived by predators. Our study provides molecular insight into cardenolide sequestration and highlights the great potential of mass spectrometry imaging for understanding the kinetics of multiple compounds including endogenous metabolites, plant toxins, or insecticides in insects.


Asunto(s)
Asclepias , Mariposas Diurnas , Cuervos , Animales , Larva , Cuervos/metabolismo , Cardenólidos/metabolismo , Asclepias/química , Asclepias/metabolismo
10.
JHEP Rep ; 5(2): 100625, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36590323

RESUMEN

Background & Aims: Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods: Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results: The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions: Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications: The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.

11.
J Occup Med Toxicol ; 17(1): 25, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544155

RESUMEN

BACKGROUND: Snake envenomation is a major neglected tropical disease, lacking data in many countries including Cyprus, a Mediterranean island inhabited by the medically important blunt-nosed viper (Macrovipera lebetina). Reviewing the 2013-2019 period, we present first-time epidemiological snakebite data in the Republic of Cyprus. METHODS: We obtained data on snake envenomation-related hospital admissions from the Ministry of Health, and population and rainfall data from the Statistical Service of Cyprus and Department of Meteorology websites. Human-viper conflict information was acquired from interviews with 12 representatives of Cypriot institutions. RESULTS: Between 2013 and 2019, 288 snake envenomation cases were admitted to public hospitals, averaging 41 people annually. The minimum was 29 cases (2017) and the maximum was 58 (2015). Snake envenomation incidence increased from 4.55 per 100,000 population (2013) to 6.84 (2015), but remained low since 2017 (3.49 in 2019). Between 2000 and 2018, the deaths of one man (73 years), and indirectly, one woman (77 years), were related to snake envenomation. While 266 cases (92%) happened between April and October (the blunt-nosed viper activity period), most envenomations occurred in September (cumulative for 2013-2019), with 88 cases (31%). Snakebite incidence peaked in the 60-69 years age group (9.19 per 100,000 population), and was higher in males (6.85) than in females (2.82). Of all admitted patients, 242 (84%) were discharged within 4 days. Mean hospital stay duration was 2.65 days, with one case of 13 days. Most patients were admitted to the general hospitals in Paphos (51%), Limassol (30%) and Nicosia (11%), which provide secondary healthcare, with the last one providing tertiary healthcare. CONCLUSIONS: Snakebite-related deaths are very rare in the Republic of Cyprus. Most envenomation cases happened in late summer (September). Short hospital stays indicate mostly non-severe clinical courses. The hospital admission data suggest that snake envenomation risk is highest in Paphos district. The statistical data hint at males and middle- to older-aged people being at highest risk, whereas from our interview data we assume that outdoor workers are at higher risk than other occupational groups.

12.
Anal Chem ; 94(46): 16086-16094, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36355437

RESUMEN

Ambient mass spectrometry imaging (MSI) methods come with the advantage of visualizing biomolecules from tissues with no or minimal sample preparation and operation under atmospheric-pressure conditions. Similar to all other MSI methodologies, however, ambient MSI modalities suffer from a pronounced bias toward either polar or nonpolar analytes due to the underlying desorption and ionization mechanisms of the ion source. In this study, we present the design, construction, testing, and application of an in-capillary dielectric barrier discharge (DBD) module for post-ionization of neutrals desorbed by an ambient infrared matrix-assisted laser desorption/ionization (IR-MALDI) MSI source. We demonstrate that the DBD device enhances signal intensities of nonpolar compounds by up to 104 compared to IR-MALDI without affecting transmission of IR-MALDI ions. This allows performing MSI experiments of mouse tissue and Danaus plexippus caterpillar tissue sections, visualizing the distribution of sterols, fatty acids, monoglycerides, and diglycerides that are not detected in IR-MALDI MSI experiments. The pronounced signal enhancement due to IR-MALDI-DBD compared to IR-MALDI MSI enables mapping of nonpolar analytes with pixel resolutions down to 20 µm in mouse brain tissue and to discern the spatial distribution of sterol lipids characteristic for histological regions of D. plexippus.


Asunto(s)
Química Encefálica , Ácidos Grasos , Animales , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Presión Atmosférica , Diagnóstico por Imagen
13.
Anal Chem ; 94(46): 15971-15979, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36347515

RESUMEN

Spatial metabolomics describes the spatially resolved analysis of interconnected pathways, biochemical reactions, and transport processes of small molecules in the spatial context of tissues and cells. However, a broad range of metabolite classes (e.g., steroids) show low intrinsic ionization efficiencies in mass spectrometry imaging (MSI) experiments, thus restricting the spatial characterization of metabolic networks. Additionally, decomposing complex metabolite networks into chemical compound classes and molecular annotations remains a major bottleneck due to the absence of repository-scaled databases. Here, we describe a multimodal mass-spectrometry-based method combining computational metabolome mining tools and high-resolution on-tissue chemical derivatization (OTCD) MSI for the spatially resolved analysis of metabolic networks at the low micrometer scale. Applied to plant toxin sequestration in Danaus plexippus as a model system, we first utilized liquid chromatography (LC)-MS-based molecular networking in combination with artificial intelligence (AI)-driven chemical characterization to facilitate the structural elucidation and molecular identification of 32 different steroidal glycosides for the host-plant Asclepias curassavica. These comprehensive metabolite annotations guided the subsequent matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) analysis of cardiac-glycoside sequestration in D. plexippus. We developed a spatial-context-preserving OTCD protocol, which improved cardiac glycoside ion yields by at least 1 order of magnitude compared to results with untreated samples. To illustrate the potential of this method, we visualized previously inaccessible (sub)cellular distributions (2 and 5 µm pixel size) of steroidal glycosides in D. plexippus, thereby providing a novel insight into the sequestration of toxic metabolites and guiding future metabolomics research of other complex sample systems.


Asunto(s)
Inteligencia Artificial , Metabolómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Metabolómica/métodos , Metaboloma , Plantas/metabolismo , Glicósidos/metabolismo
14.
Toxins (Basel) ; 14(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36287984

RESUMEN

Envenoming by Macrovipera lebetina subspecies causes severe life-threatening difficulties for people living in North Africa and the Middle East. To better understand the pathophysiology of envenoming and improve patient management, knowledge about the venom components of the subspecies is essential. Here, the venom proteomes of Macrovipera lebetina lebetina from Cyprus and Macrovipera lebetina cernovi from Iran were characterized using RP-HPLC separation of the crude venom proteins, SDS-PAGE of fractionated proteins, and LC-MS/MS of peptides obtained from in-gel tryptic digestion of protein bands. Moreover, we also used high-resolution shot-gun proteomics to gain more reliable identification, where the whole venom proteomes were subjected directly to in-solution digestion before LC-HR-MS/MS. The data revealed that both venoms consisted of at least 18 protein families, of which snake venom Zn2+-dependent metalloprotease (SVMP), serine protease, disintegrin, phospholipase A2, C-type lectin-like, and L-amino acid oxidase, together accounted for more than 80% of the venoms' protein contents. Although the two viper venoms shared mostly similar protein classes, the relative occurrences of these toxins were different in each snake subspecies. For instance, P-I class of SVMP toxins were found to be more abundant than P-III class in the venoms of M. l. cernovi compared to M. l. lebetina, which gives hints at a more potent myonecrotic effect and minor systemic hemorrhage following envenoming by M. l. cernovi than M. l. lebetina. Moreover, single-shot proteomics also revealed many proteins with low abundance (<1%) within the venoms, such as aminopeptidase, hyaluronidase, glutaminyl-peptide cyclotransferase, cystatin, phospholipase B, and vascular endothelial growth factor. Our study extends the in-depth understanding of the venom complexity of M. lebetina subspecies, particularly regarding toxin families associated with envenoming pathogenesis and those hard-detected protein classes expressed in trace amounts.


Asunto(s)
Proteómica , Viperidae , Animales , Humanos , Aminopeptidasas/metabolismo , Cromatografía Liquida , Desintegrinas/metabolismo , Hialuronoglucosaminidasa/metabolismo , Irán , L-Aminoácido Oxidasa/metabolismo , Lectinas Tipo C/metabolismo , Lisofosfolipasa/metabolismo , Metaloproteasas/metabolismo , Proteoma/metabolismo , Serina Proteasas/metabolismo , Espectrometría de Masas en Tándem , Factor A de Crecimiento Endotelial Vascular/metabolismo , Venenos de Víboras/química , Viperidae/metabolismo
15.
Molecules ; 27(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234944

RESUMEN

Cross-linking net aggregates of thermolabile thaumatin-like proteins (TLPs) and chitinases (CHIs) are the primary source of haze in white wines. Although bentonite fining is still routinely used in winemaking, alternative methods to selectively remove haze proteins without affecting wine organoleptic properties are needed. The availability of pure TLPs and CHIs would facilitate the research for the identification of such technological advances. Therefore, we proposed the usage of recombinant TLP (rTLP) and CHI (rCHI), expressed by Komagataella phaffii, as haze-protein models, since they showed similar characteristics (aggregation potential, melting point, functionality, glycosylation levels and bentonite adsorption) to the native-haze proteins from Vitis vinifera. Hence, rTLP and rCHI can be applied to study haze formation mechanisms on a molecular level and to explore alternative fining methods by screening proteolytic enzymes and ideal adsorptive resins.


Asunto(s)
Quitinasas , Vitis , Vino , Bentonita/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Aditivos Alimentarios/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vino/análisis
16.
Anal Bioanal Chem ; 414(24): 7223-7241, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36048190

RESUMEN

Besides their influence on climate and cloud formation, many organic and inorganic substances in aerosol particles pose a risk to human health. Namely, polycyclic aromatic hydrocarbons (PAH) and heavy metals are suspected to be carcinogenic or acutely toxic. The detection and quantification of such compounds is difficult if only small amounts of particulate matter (PM) are available. In addition, filter samples are often complex and time-consuming to prepare for chromatographic measurements and elemental analysis. Here, we present a method based on high-resolution atmospheric pressure laser desorption ionization mass spectrometry imaging (AP-LDI-MSI) and statistical analysis which allows the analysis and characterization of very small sample quantities (< 30 µg) without any sample preparation. The power and simplicity of the method is demonstrated by two filter samples from heavily polluted mega cities. The samples were collected in Tehran (Iran) and Hangzhou (China) in February 2018. In the course of the measurement, more than 3200 sum formulae were assigned, which allowed a statistical evaluation of colocalized substances within the particles on the filter samples. This resulted in a classification of the different particle types on the filters. Finally, both megacities could be distinguished based on characteristic compounds. In the samples from Tehran, the number of sulphur-containing organic compounds was up to 6 times as high as the samples from Hangzhou, possibly due to the increasing efforts of the Chinese government to reduce sulphur emissions in recent years. Additionally, quantification of 13 PAH species was carried out via standard addition. Especially, the samples from Tehran showed elevated concentrations of PAHs, which in the case of higher-molecular-weight species (> m/z 228) were mostly more than twice as high as in Hangzhou. Both cities showed high levels of heavy metals and potentially harmful organic compounds, although their share of total particulate matter was significantly higher in the samples from Tehran. The pre-treatment of the samples was reduced to a minimum with this method, and only small amounts of particles were required to obtain a comprehensive picture for a specific filter sample. The described method provides faster and better control of air pollution in heavily polluted megacities.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Humanos , Irán , Rayos Láser , Espectrometría de Masas/métodos , Compuestos Orgánicos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Azufre/análisis
17.
Appl Microbiol Biotechnol ; 106(18): 6095-6107, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36040487

RESUMEN

Aldehydes represent a versatile and favored class of flavoring substances. A biocatalytic access to odor-active aldehydes was developed by conversion of fatty acids with two enzymes of the α-dioxygenase pathway. The recombinant enzymes α-dioxygenase (α-DOX) originating from Crocosphaera subtropica and fatty aldehyde dehydrogenase (FALDH) from Vibrio harveyi were heterologously expressed in E. coli, purified, and applied in a coupled (tandem) repetitive reaction. The concept was optimized in terms of number of reaction cycles and production yields. Up to five cycles and aldehyde yields of up to 26% were achieved. Afterward, the approach was applied to sea buckthorn pulp oil as raw material for the enzyme catalyzed production of flavoring/fragrance ingredients based on complex aldehyde mixtures. The most abundant fatty acids in sea buckthorn pulp oil, namely palmitic, palmitoleic, oleic, and linoleic acid, were used as substrates for further biotransformation experiments. Various aldehydes were identified, semi-quantified, and sensorially characterized by means of headspace-solid phase microextraction-gas chromatography-mass spectrometry-olfactometry (HS-SPME-GC-MS-O). Structural validation of unsaturated aldehydes in terms of double-bond positions was performed by multidimensional high-resolution mass spectrometry experiments of their Paternò-Büchi (PB) photoproducts. Retention indices and odor impressions of inter alia (Z,Z)-5,8-tetradecadienal (Z,Z)-6,9-pentadecadienal, (Z)-8-pentadecenal, (Z)-4-tridecenal, (Z)-6-pentadecenal, and (Z)-8-heptadecenal were determined for the first time. KEY POINTS: • Coupled reaction of Csα-DOX and VhFALDH yields chain-shortened fatty aldehydes. • Odors of several Z-unsaturated fatty aldehydes are described for the first time. • Potential for industrial production of aldehyde-based odorants from natural sources.


Asunto(s)
Dioxigenasas , Odorantes , Aldehídos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Odorantes/análisis
18.
Toxins (Basel) ; 14(6)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35737031

RESUMEN

Scorpion venom is a complex secretory mixture of components with potential biological and physiological properties that attracted many researchers due to promising applications from clinical and pharmacological perspectives. In this study, we investigated the venom of the Iranian scorpion Hottentotta saulcyi (Simon, 1880) by applying mass-spectrometry-based proteomic and lipidomic approaches to assess the diversity of components present in the venom. The data revealed that the venom's proteome composition is largely dominated by Na+- and K+-channel-impairing toxic peptides, following the enzymatic and non-enzymatic protein families, e.g., angiotensin-converting enzyme, serine protease, metalloprotease, hyaluronidase, carboxypeptidase, and cysteine-rich secretory peptide. Furthermore, lipids comprise ~1.2% of the dry weight of the crude venom. Phospholipids, ether-phospholipids, oxidized-phospholipids, triacylglycerol, cardiolipins, very-long-chain sphingomyelins, and ceramides were the most intensely detected lipid species in the scorpion venom, may acting either independently or synergistically during the envenomation alongside proteins and peptides. The results provide detailed information on the chemical makeup of the venom, helping to improve our understanding of biological molecules present in it, leading to a better insight of the medical significance of the venom, and improving the medical care of patients suffering from scorpion accidents in the relevant regions such as Iran, Iraq, Turkey, and Afghanistan.


Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Humanos , Irán , Lipidómica , Espectrometría de Masas , Péptidos/metabolismo , Fosfolípidos/metabolismo , Proteoma/metabolismo , Proteómica , Venenos de Escorpión/química , Escorpiones/metabolismo
19.
Science ; 376(6590): eabh1623, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420948

RESUMEN

Human cells produce thousands of lipids that change during cell differentiation and can vary across individual cells of the same type. However, we are only starting to characterize the function of these cell-to-cell differences in lipid composition. Here, we measured the lipidomes and transcriptomes of individual human dermal fibroblasts by coupling high-resolution mass spectrometry imaging with single-cell transcriptomics. We found that the cell-to-cell variations of specific lipid metabolic pathways contribute to the establishment of cell states involved in the organization of skin architecture. Sphingolipid composition is shown to define fibroblast subpopulations, with sphingolipid metabolic rewiring driving cell-state transitions. Therefore, cell-to-cell lipid heterogeneity affects the determination of cell states, adding a new regulatory component to the self-organization of multicellular systems.


Asunto(s)
Fibroblastos , Piel , Esfingolípidos , Fibroblastos/química , Fibroblastos/clasificación , Fibroblastos/metabolismo , Humanos , Lipidómica/métodos , Redes y Vías Metabólicas , Piel/química , Piel/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Esfingolípidos/análisis , Esfingolípidos/metabolismo , Transcriptoma
20.
Anal Bioanal Chem ; 414(12): 3653-3665, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35320368

RESUMEN

Schistosomiasis, caused by the human parasite Schistosoma mansoni, is one of the WHO-listed neglected tropical diseases (NTDs), and it has severe impact on morbidity and mortality, especially in Africa. Not only the adult worms but also their eggs are responsible for health problems. Up to 50% of the eggs produced by the female worms are not excreted with the feces but are trapped in the host tissue, such as the liver, where they provoke immune responses and a change in the lipid profile. We built up a database with 372 infection markers found in livers of S. mansoni-infected hamsters, using LC-MS/MS for identification, followed by statistical analysis. Most of them belong to the lipid classes of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs). We assigned some of these markers to specific anatomical structures by applying high-resolution MALDI MSI to cryosections of hamster liver and generating ion images based on the marker list from the LC-MS/MS experiments. Furthermore, enrichment and depletion of several markers were visualized.


Asunto(s)
Esquistosomiasis mansoni , Animales , Cromatografía Liquida , Cricetinae , Femenino , Lípidos , Hígado , Schistosoma mansoni , Esquistosomiasis mansoni/parasitología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA