Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Toxicology ; 506: 153885, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39004335

RESUMEN

Cannabidiol (CBD) has been reported to induce hepatotoxicity in clinical trials and research studies; however, little is known about the safety of other nonintoxicating cannabinoids. New approach methodologies (NAMs) based on bioinformatic analysis of high-throughput transcriptomic data are gaining increasing importance in risk assessment and regulatory decision-making of data-poor chemicals. In the current study, we conducted a concentration response transcriptomic analysis of hemp extract and its four major constituent cannabinoids [CBD, cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN)] in hepatocytes derived from human induced pluripotent stem cells (iPSCs). Each compound impacted a distinctive combination of biological functions and pathways. However, all the cannabinoids impaired liver metabolism and caused oxidative stress in the cells. Benchmark concentration (BMC) analysis showed potencies in transcriptional activity of the cannabinoids were in the order of CBN > CBD > CBC > CBG, consistent with the order of their cytotoxicity IC50 values. Patterns of transcriptomic changes induced by hemp extract and its median overall BMC were very similar to CBD but differed significantly from other cannabinoids, suggesting that potential adverse effects of hemp extract were largely due to its major constituent CBD. Lastly, transcriptomic point-of-departure (tPoD) values were determined for each of the compounds, with the value for CBD (0.106 µM) being concordant with a previously reported one derived from apical endpoints of clinical and animal studies. Taken together, the current study demonstrates the potential utility of transcriptomic BMC analysis as a NAM for hazard assessment of data-poor chemicals, improves our understanding of the possible health effects of hemp extract and its constituent cannabinoids, and provides important tPoD data that could contribute to inform human safety assessment of these cannabinoid compounds.


Asunto(s)
Cannabinoides , Cannabis , Hepatocitos , Extractos Vegetales , Humanos , Cannabis/toxicidad , Cannabinoides/toxicidad , Extractos Vegetales/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos
2.
Regul Toxicol Pharmacol ; 151: 105653, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825064

RESUMEN

Despite two decades of research on silver nanoparticle (AgNP) toxicity, a safe threshold for exposure has not yet been established, albeit being critically needed for risk assessment and regulatory decision-making. Traditionally, a point-of-departure (PoD) value is derived from dose response of apical endpoints in animal studies using either the no-observed-adverse-effect level (NOAEL) approach, or benchmark dose (BMD) modeling. To develop new approach methodologies (NAMs) to inform human risk assessment of AgNPs, we conducted a concentration response modeling of the transcriptomic changes in hepatocytes derived from human induced pluripotent stem cells (iPSCs) after being exposed to a wide range concentration (0.01-25 µg/ml) of AgNPs for 24 h. A plausible transcriptomic PoD of 0.21 µg/ml was derived for a pathway related to the mode-of-action (MOA) of AgNPs, and a more conservative PoD of 0.10 µg/ml for a gene ontology (GO) term not apparently associated with the MOA of AgNPs. A reference dose (RfD) could be calculated from either of the PoDs as a safe threshold for AgNP exposure. The current study illustrates the usefulness of in vitro transcriptomic concentration response study using human cells as a NAM for toxicity study of chemicals that lack adequate toxicity data to inform human risk assessment.


Asunto(s)
Relación Dosis-Respuesta a Droga , Hepatocitos , Células Madre Pluripotentes Inducidas , Nanopartículas del Metal , Plata , Transcriptoma , Humanos , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Medición de Riesgo , Nivel sin Efectos Adversos Observados , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Benchmarking , Células Cultivadas , Perfilación de la Expresión Génica/métodos
3.
J Appl Toxicol ; 44(9): 1329-1346, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38724177

RESUMEN

Dietary supplements containing usnic acid have been increasingly marketed for weight loss over the past decades, even though incidences of severe hepatotoxicity and acute liver failure due to their overuse have been reported. To date, the toxic mechanism of usnic acid-induced liver injury at the molecular level still remains to be fully elucidated. Here, we conducted a transcriptomic study on usnic acid using a novel in vitro hepatotoxicity model employing human induced pluripotent stem cell (iPSC)-derived hepatocytes. Treatment with 20 µM usnic acid for 24 h caused 4272 differentially expressed genes (DEGs) in the cells. Ingenuity Pathway Analysis (IPA) based on the DEGs and gene set enrichment analysis (GSEA) using the whole transcriptome expression data concordantly revealed several signaling pathways and biological processes that, when taken together, suggest that usnic acid caused oxidative stress and DNA damage in the cells, which further led to cell cycle arrest and eventually resulted in cell death through apoptosis. These transcriptomic findings were subsequently corroborated by a variety of cellular assays, including reactive oxygen species (ROS) generation and glutathione (GSH) depletion, DNA damage (pH2AX detection and 8-hydroxy-2'-deoxyguanosine [8-OH-dg] assay), cell cycle analysis, and caspase 3/7 activity. Collectively, the results of the current study accord with previous in vivo and in vitro findings, provide further evidence that oxidative stress-caused DNA damage contributes to usnic acid-induced hepatotoxicity, shed new light on molecular mechanisms of usnic acid-induced hepatotoxicity, and demonstrate the usefulness of iPSC-derived hepatocytes as an in vitro model for hepatotoxicity testing and prediction.


Asunto(s)
Apoptosis , Benzofuranos , Daño del ADN , Hepatocitos , Células Madre Pluripotentes Inducidas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Daño del ADN/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Benzofuranos/toxicidad , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Transcriptoma/efectos de los fármacos , Glutatión/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA