Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395309

RESUMEN

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Asunto(s)
Burkholderiales , Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Reciclaje , Cinética , Burkholderiales/enzimología , Modelos Químicos
3.
Front Immunol ; 14: 1120582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911727

RESUMEN

Introduction: With the flood of engineered antibodies, there is a heightened need to elucidate the structural features of antibodies that contribute to specificity, stability, and breadth. While antibody flexibility and interface angle have begun to be explored, design rules have yet to emerge, as their impact on the metrics above remains unclear. Furthermore, the purpose of framework mutations in mature antibodies is highly convoluted. Methods: To this end, a case study utilizing molecular dynamics simulations was undertaken to determine the impact framework mutations have on the VH-VL interface. We further sought to elucidate the governing mechanisms by which changes in the VH-VL interface angle impact structural elements of mature antibodies by looking at root mean squared deviations, root mean squared fluctuations, and solvent accessible surface area. Results and discussion: Overall, our results suggest framework mutations can significantly shift the distribution of VH-VL interface angles, which leads to local changes in antibody flexibility through local changes in the solvent accessible surface area. The data presented herein highlights the need to reject the dogma of static antibody crystal structures and exemplifies the dynamic nature of these proteins in solution. Findings from this work further demonstrate the importance of framework mutations on antibody structure and lay the foundation for establishing design principles to create antibodies with increased specificity, stability, and breadth.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Cadenas Ligeras de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/genética , Mutación , Anticuerpos/genética , Solventes
4.
Front Immunol ; 13: 1029167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405722

RESUMEN

Highly mutable infectious disease pathogens (hm-IDPs) such as HIV and influenza evolve faster than the human immune system can contain them, allowing them to circumvent traditional vaccination approaches and causing over one million deaths annually. Agent-based models can be used to simulate the complex interactions that occur between immune cells and hm-IDP-like proteins (antigens) during affinity maturation-the process by which antibodies evolve. Compared to existing experimental approaches, agent-based models offer a safe, low-cost, and rapid route to study the immune response to vaccines spanning a wide range of design variables. However, the highly stochastic nature of affinity maturation and vast sequence space of hm-IDPs render brute force searches intractable for exploring all pertinent vaccine design variables and the subset of immunization protocols encompassed therein. To address this challenge, we employed deep reinforcement learning to drive a recently developed agent-based model of affinity maturation to focus sampling on immunization protocols with greater potential to improve the chosen metrics of protection, namely the broadly neutralizing antibody (bnAb) titers or fraction of bnAbs produced. Using this approach, we were able to coarse-grain a wide range of vaccine design variables and explore the relevant design space. Our work offers new testable insights into how vaccines should be formulated to maximize protective immune responses to hm-IDPs and how they can be minimally tailored to account for major sources of heterogeneity in human immune responses and various socioeconomic factors. Our results indicate that the first 3 to 5 immunizations, depending on the metric of protection, should be specially tailored to achieve a robust protective immune response, but that beyond this point further immunizations require only subtle changes in formulation to sustain a durable bnAb response.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Humanos , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Infecciones por VIH/prevención & control
5.
PLoS Comput Biol ; 18(4): e1009391, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442968

RESUMEN

The design of vaccines against highly mutable pathogens, such as HIV and influenza, requires a detailed understanding of how the adaptive immune system responds to encountering multiple variant antigens (Ags). Here, we describe a multiscale model of B cell receptor (BCR) affinity maturation that employs actual BCR nucleotide sequences and treats BCR/Ag interactions in atomistic detail. We apply the model to simulate the maturation of a broadly neutralizing Ab (bnAb) against HIV. Starting from a germline precursor sequence of the VRC01 anti-HIV Ab, we simulate BCR evolution in response to different vaccination protocols and different Ags, which were previously designed by us. The simulation results provide qualitative guidelines for future vaccine design and reveal unique insights into bnAb evolution against the CD4 binding site of HIV. Our model makes possible direct comparisons of simulated BCR populations with results of deep sequencing data, which will be explored in future applications.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Humanos
6.
Front Immunol ; 12: 728694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646268

RESUMEN

Monoclonal antibodies (mAbs) are an important class of therapeutics used to treat cancer, inflammation, and infectious diseases. Identifying highly developable mAb sequences in silico could greatly reduce the time and cost required for therapeutic mAb development. Here, we present position-specific scoring matrices (PSSMs) for antibody framework mutations developed using baseline human antibody repertoire sequences. Our analysis shows that human antibody repertoire-based PSSMs are consistent across individuals and demonstrate high correlations between related germlines. We show that mutations in existing therapeutic antibodies can be accurately predicted solely from baseline human antibody sequence data. We find that mAbs developed using humanized mice had more human-like FR mutations than mAbs originally developed by hybridoma technology. A quantitative assessment of entire framework regions of therapeutic antibodies revealed that there may be potential for improving the properties of existing therapeutic antibodies by incorporating additional mutations of high frequency in baseline human antibody repertoires. In addition, high frequency mutations in baseline human antibody repertoires were predicted in silico to reduce immunogenicity in therapeutic mAbs due to the removal of T cell epitopes. Several therapeutic mAbs were identified to have common, universally high-scoring framework mutations, and molecular dynamics simulations revealed the mechanistic basis for the evolutionary selection of these mutations. Our results suggest that baseline human antibody repertoires may be useful as predictive tools to guide mAb development in the future.


Asunto(s)
Anticuerpos Monoclonales/genética , Desarrollo de Medicamentos , Epítopos de Linfocito T/genética , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Mutación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Análisis Mutacional de ADN , Bases de Datos Genéticas , Aprobación de Drogas , Estabilidad de Medicamentos , Epítopos de Linfocito T/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/uso terapéutico , Región Variable de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/uso terapéutico , Modelos Genéticos , Simulación de Dinámica Molecular , Estabilidad Proteica , Estados Unidos , United States Food and Drug Administration
7.
Cell Rep ; 36(9): 109627, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34416153

RESUMEN

The potential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) escape mutants is a threat to the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutation landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural coronavirus disease 2019 (COVID-19) infection. Escape mutations predominantly mapped to the periphery of the angiotensin-converting enzyme 2 (ACE2) recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

8.
bioRxiv ; 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33758848

RESUMEN

The potential emergence of SARS-CoV-2 Spike (S) escape mutants is a threat to reduce the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutations landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural COVID-19 infection. Escape mutations predominantly mapped to the periphery of the ACE2 recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

9.
Phys Biol ; 18(4)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477124

RESUMEN

Biological organisms experience constantly changing environments, from sudden changes in physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological changes over evolutionary timescales. Living organisms have evolved to thrive in this changing world but the general principles by which organisms shape and are shaped by time varying environments remain elusive. Our understanding is particularly poor in the intermediate regime with no separation of timescales, where the environment changes on the same timescale as the physiological or evolutionary response. Experiments to systematically characterize the response to dynamic environments are challenging since such environments are inherently high dimensional. This roadmap deals with the unique role played by time varying environments in biological phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities and the challenges faced in this emerging area of research.


Asunto(s)
Evolución Biológica , Ambiente , Fenómenos Fisiológicos , Factores de Tiempo
10.
Proc Natl Acad Sci U S A ; 117(33): 20077-20087, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747563

RESUMEN

Natural infections and vaccination with a pathogen typically stimulate the production of potent antibodies specific for the pathogen through a Darwinian evolutionary process known as affinity maturation. Such antibodies provide protection against reinfection by the same strain of a pathogen. A highly mutable virus, like HIV or influenza, evades recognition by these strain-specific antibodies via the emergence of new mutant strains. A vaccine that elicits antibodies that can bind to many diverse strains of the virus-known as broadly neutralizing antibodies (bnAbs)-could protect against highly mutable pathogens. Despite much work, the mechanisms by which bnAbs emerge remain uncertain. Using a computational model of affinity maturation, we studied a wide variety of vaccination strategies. Our results suggest that an effective strategy to maximize bnAb evolution is through a sequential immunization protocol, wherein each new immunization optimally increases the pressure on the immune system to target conserved antigenic sites, thus conferring breadth. We describe the mechanisms underlying why sequentially driving the immune system increasingly further from steady state, in an optimal fashion, is effective. The optimal protocol allows many evolving B cells to become bnAbs via diverse evolutionary paths.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Esquemas de Inmunización , Vacunación , Vacunas Virales/inmunología , Afinidad de Anticuerpos , Linfocitos B , Simulación por Computador , VIH-1/genética , Humanos , Virus de la Influenza A/genética , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Termodinámica
11.
J Am Chem Soc ; 142(5): 2355-2363, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31934768

RESUMEN

Solid-binding peptides (SBPs) recognizing inorganic and synthetic interfaces have enabled a broad range of materials science applications and hold promise as adhesive or morphogenetic control units that can be genetically encoded within desirable or designed protein frameworks. To date, the underlying relationships governing both SBP-surface and SBP-SBP interactions and how they give rise to different adsorption mechanisms remain unclear. Here, we combine protein engineering, surface plasmon resonance characterization, and molecular dynamics (MD) simulations initiated from Rosetta predictions to gain insights on the interplay of amino acid composition, structure, self-association, and adhesion modality in a panel of variants of the Car9 silica-binding peptide (DSARGFKKPGKR) fused to the C-terminus of superfolder green fluorescent protein (sfGFP). Analysis of kinetics, energetics, and MD-predicted structures shows that the high-affinity binding of Car9 to the silanol-rich surface of silica is dominated by electrostatic contributions and a spectrum of several persistent interactions that, along with a high surface population of bound molecules, promote cooperative interactions between neighboring SBPs and higher order structure formation. Transition from cooperative to Langmuir adhesion in sfGFP-Car9 variants occurs in concert with a reduction of stable surface interactions and self-association, as confirmed by atomic force microscopy imaging of proteins exhibiting the two different binding behaviors. We discuss the implications of these results for the de novo design of SBP-surface binding systems.

12.
J Phys Chem B ; 122(37): 8665-8674, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30111095

RESUMEN

Douglas-fir forestry residues are a potential feedstock for saccharification-based biofuels, and condensed tannins are expected to make up ∼3% of the dry mass of this feedstock. Condensed tannins are well-known for their ability to interact with proteins and can bind and inhibit cellulase enzymes used in saccharification. In this study, we use molecular docking and classical molecular dynamics simulations to investigate how a characterized condensed tannin from Douglas-fir bark binds to the exoglucanase Cel7A from Trichoderma reesei. Through looking at the "occupancy" and "residency" of specific amino acid residue-tannin interactions, we find that the binding sites are characterized by many simultaneous tannin-enzyme interactions with the strongest occurring on the catalytic module as opposed to the carbohydrate-binding module. The simulations indicate that tannin inhibition can result from binding at or near the catalytic tunnel's entrance and exit. The analyzed tannin further prefers to bind to loops around the catalytic region and has affinity for aromatic and charged amino acid residues. These insights provide direction for the rational design of tannin-resistant cellulases.


Asunto(s)
Celulasas/antagonistas & inhibidores , Celulasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Pseudotsuga/química , Taninos/metabolismo , Dominio Catalítico , Celulasas/química , Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Electricidad Estática , Taninos/química , Trichoderma/enzimología
13.
Biointerphases ; 12(2): 02D412, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28525957

RESUMEN

Enzymes play a critical role in many applications in biology and medicine as potential therapeutics. One specific area of interest is enzyme encapsulation in polymer nanostructures, which have applications in drug delivery and catalysis. A detailed understanding of the mechanisms governing protein/polymer interactions is crucial for optimizing the performance of these complex systems for different applications. Using a combined computational and experimental approach, this study aims to quantify the relative importance of molecular and mesoscale driving forces to protein release from polymeric nanoparticles. Classical molecular dynamics (MD) simulations have been performed on bovine serum albumin (BSA) in aqueous solutions with oligomeric surrogates of poly(lactic-co-glycolic acid) copolymer, poly(styrene)-poly(lactic acid) copolymer, and poly(lactic acid). The simulated strength and location of polymer surrogate binding to the surface of BSA have been compared to experimental BSA release rates from nanoparticles formulated with these same polymers. Results indicate that the self-interaction tendencies of the polymer surrogates and other macroscale properties may play governing roles in protein release. Additional MD simulations of BSA in solution with poly(styrene)-acrylate copolymer reveal the possibility of enhanced control over the enzyme encapsulation process by tuning polymer self-interaction. Last, the authors find consistent protein surface binding preferences across simulations performed with polymer surrogates of varying lengths, demonstrating that protein/polymer interactions can be understood in part by studying the interactions and affinity of proteins with small polymer surrogates in solution.


Asunto(s)
Ácido Láctico/química , Simulación de Dinámica Molecular , Nanopartículas/química , Poliésteres/química , Ácido Poliglicólico/química , Poliestirenos/química , Albúmina Sérica Bovina , Animales , Bovinos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA