Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0169023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501806

RESUMEN

Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.


Asunto(s)
Adenosina Trifosfato , Antimaláricos , Transferencia Resonante de Energía de Fluorescencia , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Adenosina Trifosfato/metabolismo , Antimaláricos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Humanos , Quinina/farmacología , Doxiciclina/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Concentración de Iones de Hidrógeno
2.
Parasitol Int ; 87: 102513, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34785370

RESUMEN

Plasmodium falciparum macrophage migration inhibitory factor (PfMIF) is a homologue of the multifunctional human host cytokine MIF (HsMIF). Upon schizont rupture it is released into the human blood stream where it acts as a virulence factor, modulating the host immune system. Whereas for HsMIF a tautomerase, an oxidoreductase, and a nuclease activity have been identified, the latter has not yet been studied for PfMIF. Furthermore, previous studies identified PfMIF as a target for several redox post-translational modifications. Therefore, we analysed the impact of S-glutathionylation and S-nitrosation on the protein's functions. To determine the impact of the four cysteines of PfMIF we produced His-tagged cysteine to alanine mutants of PfMIF via site-directed mutagenesis. Recombinant proteins were analysed via mass spectrometry, and enzymatic assays. Here we show for the first time that PfMIF acts as a DNase of human genomic DNA and that this activity is greater than that shown by HsMIF. Moreover, we observed a significant decrease in the maximum velocity of the DCME tautomerase activity of PfMIF upon alanine replacement of Cys3, and Cys3/Cys4 double mutant. Lastly, using a yeast reporter system, we were able to verify binding of PfMIF to the human chemokine receptors CXCR4, and demonstrate a so-far overlooked binding to CXCR2, both of which function as non-cognate receptors for HsMIF. While S-glutathionylation and S-nitrosation of PfMIF did not impair the tautomerase activity of PfMIF, activation of these receptors was significantly decreased.


Asunto(s)
Cisteína/deficiencia , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/genética , Plasmodium falciparum/química , Alanina/química , Cisteína/genética , Desoxirribonucleasas/metabolismo , Humanos , Plasmodium falciparum/genética , Proteínas Recombinantes/genética
3.
J Am Vet Med Assoc ; 242(11): 1573-7, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23683024

RESUMEN

OBJECTIVE: To evaluate immunity induced by a multivalent vaccine containing a US Leptospira borgpetersenii serovar Hardjo type hardjo bovis (LHB) isolate in heifers challenged 12 months after vaccination. DESIGN: Prospective vaccine challenge study. ANIMALS: 36 one-month old Holstein heifers. PROCEDURES: 18 heifers were vaccinated at 4 and 8 weeks of age with an inactivated vaccine containing Leptospira fractions. Additionally, 18 heifers were vaccinated at the same age with the same vaccine without any Leptospira fractions. All heifers were challenged with a US-origin LHB 12 months following booster vaccination. Urine samples were collected weekly for 8 weeks after challenge, and serum was collected at -1, 28, and 56 days after challenge for serologic testing. At 8 weeks after challenge, all heifers were necropsied, and kidney and reproductive system samples were collected for bacteriologic culture. RESULTS: 4 of 18 vaccinates had positive results of bacteriologic culture of urine samples, but only at 1 time point. All control heifers had positive results of bacteriologic culture of urine samples for at least 5 time points. Vaccinates had negative results of bacteriologic culture of kidney and reproductive system samples following necropsy, whereas all control heifers had positive results of bacteriologic culture of kidney samples and 5 of 18 had positive results of bacteriologic culture of reproductive system samples. CONCLUSIONS AND CLINICAL RELEVANCE: The vaccine administered to calves at 1 month of age prevented leptospire colonization of kidney and reproductive system tissue and significantly reduced urine shedding following challenge 12 months after vaccination. This vaccine provides an opportunity to protect calves at an early age from becoming infected and ultimately from becoming an LHB reservoir.


Asunto(s)
Vacunas Bacterianas/inmunología , Enfermedades de los Bovinos/prevención & control , Leptospira/inmunología , Leptospirosis/veterinaria , Animales , Derrame de Bacterias , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/microbiología , Humanos , Leptospirosis/prevención & control , Sistema Urinario/microbiología
7.
Hosp Top ; 50(11): 36-37, 1972 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26600028
8.
Hosp Top ; 50(2): 39-40, 1972 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26600138
9.
Hosp Top ; 50(9): 57-74, 1972 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28142578
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA