Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Dalton Trans ; 50(16): 5437-5441, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908998

RESUMEN

Herein we report the synthesis and structures of [(CH3)2NH2]Er(HCO2)2(C2O4) and [(NH2)3C]Er(HCO2)2(C2O4), in which the inclusion of divalent oxalate ligands allows for the exclusive incorporation of A+ and B3+ cations in an ABX3 hybrid perovskite structure for the first time. We rationalise the observed thermal expansion of these materials, including negative thermal expansion, and find evidence for weak antiferromagnetic coupling in [(CH3)2NH2]Er(HCO2)2(C2O4).

3.
Angew Chem Int Ed Engl ; 57(29): 9054-9058, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29851252

RESUMEN

A new binary organic salt diphenyl diisopropylamino phosphonium hexaflurophosphate (DPDP⋅PF6 ) was shown to exhibit a good ferroelectric response and employed for mechanical energy harvesting application. The phosphonium salt crystallizes in the monoclinic noncentrosymmetric space group Cc and exhibits an H-bonded 1D chain structure due to N-H⋅⋅⋅F interactions. Ferroelectric measurements on the single crystals of DPDP⋅PF6 gave a well-saturated rectangular hysteresis loop with a remnant (Pr ) polarization value of 6 µC cm-2 . Further, composite devices based on polydimethylsiloxane (PDMS) films for various weight percentages (3, 5, 7, 10 and 20 wt %) of DPDP⋅PF6 were prepared and examined for power generation by using an impact test setup. A maximum output peak-to-peak voltage (VPP ) of 8.5 V and an output peak-to-peak current (IPP ) of 0.5 µA was obtained for the non-poled composite film with 10 wt % of DPDP⋅PF6 . These results show the efficacy of organic ferroelectric substances as potential micropower generators.

4.
Artículo en Inglés | MEDLINE | ID: mdl-29263566

RESUMEN

Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic Alzheimer's disease (AD) patients. PET scans provide functional information that is unique and unavailable using other types of imaging. However, the computational efficacy of FDG-PET data alone, for the classification of various Alzheimers Diagnostic categories, has not been well studied. This motivates us to correctly discriminate various AD Diagnostic categories using FDG-PET data. Deep learning has improved state-of-the-art classification accuracies in the areas of speech, signal, image, video, text mining and recognition. We propose novel methods that involve probabilistic principal component analysis on max-pooled data and mean-pooled data for dimensionality reduction, and multilayer feed forward neural network which performs binary classification. Our experimental dataset consists of baseline data of subjects including 186 cognitively unimpaired (CU) subects, 336 mild cognitive impairment (MCI) subjects with 158 Late MCI and 178 Early MCI, and 146 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. We measured F1-measure, precision, recall, negative and positive predictive values with a 10-fold cross validation scheme. Our results indicate that our designed classifiers achieve competitive results while max pooling achieves better classification performance compared to mean-pooled features. Our deep model based research may advance FDG-PET analysis by demonstrating their potential as an effective imaging biomarker of AD.

5.
Dalton Trans ; 45(8): 3616-26, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26810917

RESUMEN

The reaction of hydrated nickel(II) salts (chloride or nitrate) and hydrated lanthanide nitrate salts with the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol (HL) in methanol resulted in the isolation of three isostructural linear heterometallic trinuclear complexes and a heterometallic tetranuclear complex. The molecular structures of these complexes were determined via single crystal X-ray diffraction revealing molecular structures of formulae [Ni2La(L-)6](NO3)0.55(OH)0.45 (1), [Ni2Pr(L-)6](NO3)0.48(OH)0.52 (2), [Ni2Tb(L-)6](NO3)0.5(Cl)0.5 (3) and [Ni2Dy2(L-2(o-vanillin)2(CO3)2(NO3)2(MeOH)2] (4). Structural analysis for 1-3 reveals that the lanthanide ion is sandwiched between two Ni(II) ions and the Ni⋯Ln⋯Ni metallic core displays a linear arrangement, with an average ∠Ni⋯Ln⋯Ni bond angle of 179.7°. Analysis of 4 reveals the metal ions are arranged such that two Ni-Dy subunits are bridged by two carbonate ligands via the Dy sites. Direct current magnetic susceptibility measurements for complexes 1-4 reveal that the Ni(II) ions are coupled ferromagnetically with the Tb(III) (3) and Dy(III) (4) ions, and antiferromagnetically with the Pr(III) ion (2). For complex 1 a long range intramolecular ferromagnetic interaction is witnessed between the Ni(II) ions (Ni⋯Ni = 6.873(9) Å) via a closed shell La(III) ion. The magnetic data of 1 were fitted using the HDVV Hamiltonian revealing the following parameters; J = +0.46 cm(-1), g = 2.245, D = +4.91 cm(-1). Alternating current magnetic susceptibility measurements performed on complexes 2-4 revealed that 3 and 4 displayed frequency dependent χ''M signals (Hac = 3.5 Oe and Hdc = 0 Oe) which is a characteristic signature of a single-molecule magnet behaviour.

6.
Inorg Chem ; 54(7): 3196-202, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25781912

RESUMEN

A charge-neutral tetrahedral [(Pd3X)4L6] cage assembly built from a trinuclear polyhedral building unit (PBU), [Pd3X](3+), cis-blocked with an imido P(V) ligand, [(N(i)Pr)3PO](3-) (X(3-)), and oxalate dianions (L(2-)) is reported. Use of benzoate or ferrocene dicarboxylate anions, which do not offer wide-angle chelation as that of oxalate dianions, leads to smaller prismatic clusters instead of polyhedral cage assemblies. The porosity of the tetrahedral cage assembly was determined by gas adsorption studies, which show a higher uptake capacity for CO2 over N2 and H2. The tetrahedral cage was shown to encapsulate a wide range of neutral guest solvents from polar to nonpolar such as dimethyl sulfoxide, benzene, dichloromethane, chloroform, carbon tetrachloride, and cyclopentane as observed by mass spectral and single-crystal X-ray diffraction studies. The (1)H two-dimensional diffusion ordered spectroscopy NMR analysis shows that the host and guest molecules exhibit similar diffusion coefficients in all the studied host-guest systems. Further, the tetrahedral cage shows selective binding of benzene, CCl4, and cyclopentane among other solvents from their categories as evidenced from mass spectral analysis. A preliminary density functional theory analysis gave a highest binding energy for benzene among the other solvents that were structurally shown to be encapsulated at the intrinsic cavity of the tetrahedral cage.


Asunto(s)
Modelos Moleculares , Paladio/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular
7.
Dalton Trans ; 43(46): 17375-84, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25330279

RESUMEN

We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for better MCE efficiency.


Asunto(s)
Complejos de Coordinación/química , Gadolinio/química , Elementos de la Serie de los Lantanoides/química , Magnetismo , Níquel/química , Praseodimio/química , Temperatura , Zinc/química , Cristalografía por Rayos X
8.
Dalton Trans ; 43(22): 8166-9, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24760039

RESUMEN

By employing a tridentate thiophosphoramide ligand, [(NHAQ)3P[double bond, length as m-dash]S] (AQ = 3-quinolinyl), a cationic MOF, {[Cu6I5(L(1))2](OH)·3DMF·2.5MeOH}n, was synthesized. Photo-physical studies on the 2D-MOF showed an unusual thermochromic behaviour emitting a blue fluorescence at 298 K due to the AQ chromophore and an orange-yellow phosphorescence at 77 K due to the [Cu6I5](+) unit.


Asunto(s)
Cobre/química , Yoduros/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Fosforamidas/química , Termodinámica , Cationes , Ligandos , Modelos Moleculares , Estructura Molecular , Fotoquímica
9.
Chemistry ; 20(20): 6061-70, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24700566

RESUMEN

The homometallic hexameric ruthenium cluster of the formula [Ru(III)6(µ3-O)2(µ-OH)2((CH3)3CCO2)12(py)2] (1) (py = pyridine) is solved by single-crystal X-ray diffraction. Magnetic susceptibility measurements performed on 1 suggest that the antiferromagnetic interaction between the Ru(III) centers is dominant, and this is supported by theoretical studies. Theoretical calculations based on density functional methods yield eight different exchange interaction values for 1: J1 = -737.6, J2 = +63.4, J3 = -187.6, J4 = +124.4, J5 = -376.4, J6 = -601.2, J7 = -657.0, and J8 = -800.6 cm(-1). Among all the computed J values, six are found to be antiferromagnetic. Four exchange values (J1, J6, J7 and J8) are computed to be extremely strong, with J8, mediated through one µ-hydroxo and a carboxylate bridge, being by far the largest exchange obtained for any transition-metal cluster. The origin of these strong interactions is the orientation of the magnetic orbitals in the Ru(III) centers, and the computed J values are rationalized by using molecular orbital and natural bond order analysis. Detailed NMR studies ((1)H, (13)C, HSQC, NOESY, and TOCSY) of 1 (in CDCl3) confirm the existence of the solid-state structure in solution. The observation of sharp NMR peaks and spin-lattice time relaxation (T1 relaxation) experiments support the existence of strong intramolecular antiferromagnetic exchange interactions between the metal centers. A broad absorption peak around 600-1000 nm in the visible to near-IR region is a characteristic signature of an intracluster charge-transfer transition. Cyclic voltammetry experiments show that there are three reversible one-electron redox couples at -0.865, +0.186, and +1.159 V with respect to the Ag/AgCl reference electrode, which corresponds to two metal-based one-electron oxidations and one reduction process.


Asunto(s)
Oxígeno/química , Piridinas/química , Rutenio/química , Cristalografía por Rayos X , Dimerización , Espectroscopía de Resonancia Magnética , Imanes/química , Modelos Moleculares , Piridinas/síntesis química , Teoría Cuántica , Espectroscopía Infrarroja por Transformada de Fourier
10.
Dalton Trans ; 43(1): 259-66, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24100508

RESUMEN

A linear trimeric cluster of molecular formula [Ni2Gd(L(-))6](NO3) (1) (L(-) = (C14H12NO2) has been isolated with its structure determined via single crystal X-ray diffraction. Magnetic susceptibility measurements of 1 show that the nickel and gadolinium ions are coupled ferromagnetically, with a ground total spin state (S) of 11/2. Best fit spin Hamiltonian parameters obtained for 1 are J(1(Ni-Gd)) = +0.54 cm(-1), g = 2.01. EPR measurements confirm a low magnetic anisotropy (D = -0.135 cm(-1)) for 1. Heat capacity determination of the magnetocaloric effect (MCE) parameters for 1 shows that the change in magnetic entropy (-ΔS(m)) achieves a maximum of 13.74 J kg(-1) K(-1) at 4.0 K, with the ferromagnetic coupling giving a rapid change in low applied fields, confirming the potential of Gd molecular derivatives as coolants at liquid helium temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA