Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Brain Behav Immun ; 122: 27-43, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098436

RESUMEN

Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.

2.
Biol Psychiatry Glob Open Sci ; 4(5): 100343, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39092139

RESUMEN

Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.


Sex differences are a contributing factor in neuropsychiatric conditions such as autism, which is more prevalent in males. Sex differences occur through interactions between sex steroid hormones such as estrogen and testosterone and sex chromosomes (chrX and chrY). Human stem cell­derived brain organoids are laboratory models that mimic brain development. For example, in individuals with neurodevelopmental conditions, brain organoids have revealed an imbalance of neuron populations compared with neurotypical individuals. In this review, we discuss sex steroid and sex chromosome influences on brain development and challenges of this model that need to be taken into account when studying sex differences.

3.
Nat Commun ; 15(1): 3803, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778015

RESUMEN

Human endogenous retroviruses (HERVs) are repetitive elements previously implicated in major psychiatric conditions, but their role in aetiology remains unclear. Here, we perform specialised transcriptome-wide association studies that consider HERV expression quantified to precise genomic locations, using RNA sequencing and genetic data from 792 post-mortem brain samples. In Europeans, we identify 1238 HERVs with expression regulated in cis, of which 26 represent expression signals associated with psychiatric disorders, with ten being conditionally independent from neighbouring expression signals. Of these, five are additionally significant in fine-mapping analyses and thus are considered high confidence risk HERVs. These include two HERV expression signatures specific to schizophrenia risk, one shared between schizophrenia and bipolar disorder, and one specific to major depressive disorder. No robust signatures are identified for autism spectrum conditions or attention deficit hyperactivity disorder in Europeans, or for any psychiatric trait in other ancestries, although this is likely a result of relatively limited statistical power. Ultimately, our study highlights extensive HERV expression and regulation in the adult cortex, including in association with psychiatric disorder risk, therefore providing a rationale for exploring neurological HERV expression in complex neuropsychiatric traits.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Retrovirus Endógenos , Estudio de Asociación del Genoma Completo , Esquizofrenia , Transcriptoma , Humanos , Retrovirus Endógenos/genética , Esquizofrenia/genética , Esquizofrenia/virología , Trastorno Bipolar/genética , Factores de Riesgo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/virología , Trastornos Mentales/genética , Encéfalo/metabolismo , Encéfalo/virología , Femenino , Masculino , Predisposición Genética a la Enfermedad , Trastorno por Déficit de Atención con Hiperactividad/genética , Adulto
4.
Eur J Neurosci ; 59(8): 2102-2117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279611

RESUMEN

The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.


Asunto(s)
Esquizofrenia , Humanos , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Estudio de Asociación del Genoma Completo , Células HEK293 , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Neuronas/fisiología , Esquizofrenia/genética , Esquizofrenia/metabolismo
6.
Front Mol Neurosci ; 16: 1191323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441676

RESUMEN

Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.

7.
Proc Natl Acad Sci U S A ; 120(31): e2300191120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490537

RESUMEN

Social memory is essential to the functioning of a social animal within a group. Estrogens can affect social memory too quickly for classical genomic mechanisms. Previously, 17ß-estradiol (E2) rapidly facilitated short-term social memory and increased nascent synapse formation, these synapses being potentiated following neuronal activity. However, what mechanisms underlie and coordinate the rapid facilitation of social memory and synaptogenesis are unclear. Here, the necessity of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling for rapid facilitation of short-term social memory and synaptogenesis was tested. Mice performed a short-term social memory task or were used as task-naïve controls. ERK and PI3K pathway inhibitors were infused intradorsal hippocampally 5 min before E2 infusion. Forty minutes following intrahippocampal E2 or vehicle administration, tissues were collected for quantification of glutamatergic synapse number in the CA1. Dorsal hippocampal E2 rapid facilitation of short-term social memory depended upon ERK and PI3K pathways. E2 increased glutamatergic synapse number (bassoon puncta positive for GluA1) in task-performing mice but decreased synapse number in task-naïve mice. Critically, ERK signaling was required for synapse formation/elimination in task-performing and task-naïve mice, whereas PI3K inhibition blocked synapse formation only in task-performing mice. While ERK and PI3K are both required for E2 facilitation of short-term social memory and synapse formation, only ERK is required for synapse elimination. This demonstrates previously unknown, bidirectional, rapid actions of E2 on brain and behavior and underscores the importance of estrogen signaling in the brain to social behavior.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Fosfatidilinositol 3-Quinasas , Ratones , Femenino , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Estrógenos/farmacología , Estrógenos/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo
9.
Brain Behav Immun ; 110: 43-59, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36781081

RESUMEN

BACKGROUND: Prenatal exposure to elevated interleukin (IL)-6 levels is associated with increased risk for psychiatric disorders with a putative neurodevelopmental origin, such as schizophrenia (SZ), autism spectrum condition (ASC) and bipolar disorder (BD). Although rodent models provide causal evidence for this association, we lack a detailed understanding of the cellular and molecular mechanisms in human model systems. To close this gap, we characterized the response of human induced pluripotent stem cell (hiPSC-)derived microglia-like cells (MGL) and neural progenitor cells (NPCs) to IL-6 in monoculture. RESULTS: We observed that human forebrain NPCs did not respond to acute IL-6 exposure in monoculture at both protein and transcript levels due to the absence of IL6R expression and soluble (s)IL6Ra secretion. By contrast, acute IL-6 exposure resulted in STAT3 phosphorylation and increased IL6, JMJD3 and IL10 expression in MGL, confirming activation of canonical IL6Ra signaling. Bulk RNAseq identified 156 up-regulated genes (FDR < 0.05) in MGL following acute IL-6 exposure, including IRF8, REL, HSPA1A/B and OXTR, which significantly overlapped with an up-regulated gene set from human post-mortem brain tissue from individuals with schizophrenia. Acute IL-6 stimulation significantly increased MGL motility, consistent with gene ontology pathways highlighted from the RNAseq data and replicating rodent model indications that IRF8 regulates microglial motility. Finally, IL-6 induces MGLs to secrete CCL1, CXCL1, MIP-1α/ß, IL-8, IL-13, IL-16, IL-18, MIF and Serpin-E1 after 3 h and 24 h. CONCLUSION: Our data provide evidence for cell specific effects of acute IL-6 exposure in a human model system, ultimately suggesting that microglia-NPC co-culture models are required to study how IL-6 influences human cortical neural progenitor cell development in vitro.


Asunto(s)
Interleucina-6 , Microglía , Células-Madre Neurales , Receptores de Interleucina-6 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factores Reguladores del Interferón/metabolismo , Interleucina-6/efectos adversos , Interleucina-6/metabolismo , Interleucina-6/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Receptores de Interleucina-6/metabolismo
10.
Hippocampus ; 33(4): 322-346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36709412

RESUMEN

Hippocampal neurogenesis (HN) is considered an important mechanism underlying lifelong brain plasticity, and alterations in this process have been implicated in early Alzheimer's disease progression. APOE polymorphism is the most common genetic risk factor for late-onset Alzheimer's disease where the ε4 genotype is associated with a significantly earlier disease onset compared to the neutral ε3 allele. Recently, APOE has been shown to play an important role in the regulation of HN. However, the time-dependent impact of its polymorphism in humans remains elusive, partially due to the difficulties of studying human HN in vivo. To bridge this gap of knowledge, we used an in vitro cellular model of human HN and performed a time course characterization on isogenic induced pluripotent stem cells with different genotypes of APOE. We found that APOE itself was more highly expressed in ε4 at the stem cell stage, while the divergence of differential gene expression phenotype between ε4 and ε3 became prominent at the neuronal stage of differentiation. This divergence was not associated with the differential capacity to generate dentate gyrus granule cell-like neurons, as its level was comparable between ε4 and ε3. Transcriptomic profiling across different stages of neurogenesis indicated a clear "maturation of functional neurons" phenotype in ε3 neural progenitors and neurons, while genes differentially expressed only in ε4 neurons suggested potential alterations in "metabolism and mitochondrial function." Taken together, our in vitro investigation suggests that APOE ε4 allele can exert a transcriptome-wide effect at the later stages of HN, without altering the overall level of neurogenesis per se.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Hipocampo , Neurogénesis/genética , Polimorfismo Genético
12.
Mol Psychiatry ; 27(12): 5049-5061, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36195636

RESUMEN

Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.


Asunto(s)
COVID-19 , Delirio , Hipocampo , Neurogénesis , Anciano , Humanos , COVID-19/sangre , COVID-19/metabolismo , COVID-19/patología , Delirio/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-12/metabolismo , Interleucina-12/farmacología , Interleucina-13/metabolismo , Interleucina-13/farmacología , Interleucina-6 , Células Madre/metabolismo , Células Madre/virología
13.
Schizophr Res ; 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35701280

RESUMEN

Microdeletions at the 22q11.2 locus are associated with increased risk for schizophrenia. Recent work has demonstrated that antipsychotic naïve 22q11.2 carriers display elevated levels of dopamine synthesis capacity (DSC) as assessed by 18F-DOPA PET imaging. While this is consistent with a role for abnormal dopamine function in schizophrenia, it is unclear what molecular changes may be associated with this neuro-imaging endophenotype, and moreover, if these alterations occur independently of clinical presentation. We therefore conducted a pilot study in which we generated human induced pluripotent stem cells (hiPSCs) from two 22q11.2 deletion carriers with elevated DSC in vivo, but distinct clinical presentations. From these and neurotypical control lines we were able to robustly generate midbrain dopaminergic neurons (mDA-neurons). We then assessed whether genes associated with dopamine synthesis, metabolism or signaling show altered expression between genotypes and further between the 22q11.2 deletion lines. Our data showed alterations in expression of genes associated with dopamine metabolism and signaling that differed between the two 22q11.2 hiPSC lines with distinct clinical presentations. This reinforces the importance of considering clinical, genetic and molecular information, when possible, when choosing which donors to generate hiPSCs from, to carry out mechanistic studies.

14.
Brain Behav Immun ; 105: 82-97, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35716830

RESUMEN

Maternal immune activation (MIA) during prenatal development is an environmental risk factor for psychiatric disorders including schizophrenia (SZ). Converging lines of evidence from human and animal model studies suggest that elevated cytokine levels in the maternal and fetal compartments are an important indication of the mechanisms driving this association. However, there is variability in susceptibility to the psychiatric risk conferred by MIA, likely influenced by genetic factors. How MIA interacts with a genetic profile susceptible to SZ is challenging to test in animal models. To address this gap, we examined whether differential gene expression responses occur in forebrain-lineage neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSC) generated from three individuals with a diagnosis of schizophrenia and three healthy controls. Following acute (24 h) treatment with either interferon-gamma (IFNγ; 25 ng/µl) or interleukin (IL)-1ß (10 ng/µl), we identified, by RNA sequencing, 3380 differentially expressed genes (DEGs) in the IFNγ-treated control lines (compared to untreated controls), and 1980 DEGs in IFNγ-treated SZ lines (compared to untreated SZ lines). Out of 4137 genes that responded significantly to IFNγ across all lines, 1223 were common to both SZ and control lines. The 2914 genes that appeared to respond differentially to IFNγ treatment in SZ lines were subjected to a further test of significance (multiple testing correction applied to the interaction effect between IFNγ treatment and SZ diagnosis), yielding 359 genes that passed the significance threshold. There were no differentially expressed genes in the IL-1ß-treatment conditions after Benjamini-Hochberg correction. Gene set enrichment analysis however showed that IL-1ß impacts immune function and neuronal differentiation. Overall, our data suggest that a) SZ NPCs show an attenuated transcriptional response to IFNγ treatment compared to controls; b) Due to low IL-1ß receptor expression in NPCs, NPC cultures appear to be less responsive to IL-1ß than IFNγ; and c) the genes differentially regulated in SZ lines - in the face of a cytokine challenge - are primarily associated with mitochondrial, "loss-of-function", pre- and post-synaptic gene sets. Our findings particularly highlight the role of early synaptic development in the association between maternal immune activation and schizophrenia risk.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Esquizofrenia , Animales , Citocinas/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Embarazo , Prosencéfalo , Esquizofrenia/genética , Esquizofrenia/metabolismo
15.
16.
Front Neurosci ; 16: 834058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495047

RESUMEN

Maternal immune activation (MIA) is mediated by activation of inflammatory pathways resulting in increased levels of cytokines and chemokines that cross the placental and blood-brain barriers altering fetal neural development. Maternal viral infection is one of the most well-known causes for immune activation in pregnant women. MIA and immune abnormalities are key players in the etiology of developmental conditions such as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating MIA in with different effects in the offspring is complex. For decades, scientists have relied on either MIA models or human epidemiological data or a combination of both. MIA models are generated using infection/pathogenic agents to induce an immunological reaction in rodents and monitor the effects. Human epidemiological studies investigate a link between maternal infection and/or high levels of cytokines in pregnant mothers and the likelihood of developing conditions. In this review, we discuss the importance of understanding the relationship between virus-mediated MIA and neurodevelopmental conditions, focusing on autism and schizophrenia. We further discuss the different methods of studying MIA and their limitations and focus on the different factors contributing to MIA heterogeneity.

17.
Hum Mol Genet ; 31(5): 674-691, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34542148

RESUMEN

The cell-adhesion proteins neuroligin-3 and neuroligin-4X (NLGN3/4X) have well described roles in synapse formation. NLGN3/4X are also expressed highly during neurodevelopment. However, the role these proteins play during this period is unknown. Here we show that NLGN3/4X localized to the leading edge of growth cones where it promoted neuritogenesis in immature human neurons. Super-resolution microscopy revealed that NLGN3/4X clustering induced growth cone enlargement and influenced actin filament organization. Critically, these morphological effects were not induced by autism spectrum disorder (ASD)-associated NLGN3/4X variants. Finally, actin regulators p21-activated kinase 1 and cofilin were found to be activated by NLGN3/4X and involved in mediating the effects of these adhesion proteins on actin filaments, growth cones and neuritogenesis. These data reveal a novel role for NLGN3 and NLGN4X in the development of neuronal architecture, which may be altered in the presence of ASD-associated variants.


Asunto(s)
Trastorno del Espectro Autista , Conos de Crecimiento , Trastorno del Espectro Autista/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Conos de Crecimiento/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
18.
Sci Rep ; 11(1): 20375, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645914

RESUMEN

To explore markers for synaptic function and Alzheimer disease (AD) pathology in late life depression (LLD), predementia AD and normal controls (NC). A cross-sectional study to compare cerebrospinal fluid (CSF) levels of neurogranin (Ng), Beta-site amyloid-precursor-protein cleaving enzyme1 (BACE1), Ng/BACE1 ratio and Amyloid-ß 42/40 ratio, phosphorylated-tau and total-tau in LLD with (LLD AD) or without (LLD NoAD) AD pathology, predementia AD and normal controls (NC). We included 145 participants (NC = 41; predementia AD = 66 and LLD = 38). LLD comprised LLD AD (n = 16), LLD NoAD (n = 19), LLD with non-AD typical changes (n = 3, excluded). LLD AD (pADJ < 0.05) and predementia AD (pADJ < 0.0001) showed significantly higher Ng than NC. BACE1 and Ng/BACE1 ratio were altered similarly. Compared to LLD NoAD, LLD AD showed significantly higher Ng (pADJ < 0.001), BACE1 (pADJ < 0.05) and Ng/BACE1 ratio (pADJ < 0.01). All groups had significantly lower Aß 42/40 ratio than NC (predementia AD and LLD AD, p < 0.0001; LLD NoAD, p < 0.05). Both LLD groups performed similarly on tests of memory and executive function, but significantly poorer than NC. Synaptic function in LLD depended on AD pathology. LLD showed an association to Amyloid dysmetabolism. The LLD groups performed poorer cognitively than NC. LLD AD may be conceptualized as "predementia AD with depression".


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Secretasas de la Proteína Precursora del Amiloide/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Ácido Aspártico Endopeptidasas/líquido cefalorraquídeo , Depresión/líquido cefalorraquídeo , Neurogranina/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Sinapsis/metabolismo , Anciano , Enfermedad de Alzheimer/clasificación , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Humanos , Persona de Mediana Edad
19.
Brain Behav Immun ; 97: 410-422, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34352366

RESUMEN

Neurogenesis, the process in which new neurons are generated, occurs throughout life in the mammalian hippocampus. Decreased adult hippocampal neurogenesis (AHN) is a common feature across psychiatric disorders, including schizophrenia, depression- and anxiety-related behaviours, and is highly regulated by environmental influences. Epidemiological studies have consistently implicated maternal immune activation (MIA) during neurodevelopment as a risk factor for psychiatric disorders in adulthood. The extent to which the reduction of hippocampal neurogenesis in adulthood may be driven by early life exposures, such as MIA, is however unclear. We therefore reviewed the literature for evidence of the involvement of MIA in disrupting AHN. Consistent with our hypothesis, data from both in vivo murine and in vitro human models of AHN provide evidence for key roles of specific cytokines induced by MIA in the foetal brain in disrupting hippocampal neural progenitor cell proliferation and differentiation early in development. The precise molecular mechanisms however remain unclear. Nonetheless, these data suggest a potential latent vulnerability mechanism, whereby MIA primes dysfunction in the unique hippocampal pool of neural stem/progenitor cells. This renders offspring potentially more susceptible to additional environmental exposures later in life, such as chronic stress, resulting in the unmasking of psychopathology. We highlight the need for studies to test this hypothesis using validated animal models of MIA, but also to test the relevance of such data for human pathology at a molecular basis through the use of patient-derived induced pluripotent stem cells (hiPSC) differentiated into hippocampal progenitor cells.


Asunto(s)
Hipocampo , Neurogénesis , Adulto , Animales , Trastornos de Ansiedad , Diferenciación Celular , Humanos , Ratones , Neuronas
20.
Mol Brain ; 14(1): 98, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174924

RESUMEN

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Asunto(s)
Relojes Biológicos/genética , Encéfalo/embriología , Senescencia Celular , Epigénesis Genética , Feto/citología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Neuronas/citología , Senescencia Celular/genética , Metilación de ADN/genética , Bases de Datos Genéticas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Embarazo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA