Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 6009787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439688

RESUMEN

Age-related macular degeneration (AMD), the leading cause of blindness in elderly populations, involves the loss of central vision due to progressive dysfunction of the retinal pigment epithelium (RPE) and subsequent loss of light-sensing photoreceptors. While age is a key risk factor, not every aged individual develops AMD. Thus, the critical question is what specific cellular changes tip the balance from healthy aging to disease. To distinguish between changes associated with aging and AMD, we compared the RPE proteome in human eye bank tissue from nondiseased donors during aging (n = 50, 29-91 years) and in donors with AMD (n = 36) compared to age-matched donors without disease (n = 28). Proteins from RPE cells were separated on two-dimensional gels, analyzed for content, and identified using mass spectrometry. A total of 58 proteins displayed significantly altered content with either aging or AMD. Proteins involved in metabolism, protein turnover, stress response, and cell death were altered with both aging and AMD. However, the direction of change was predominantly opposite. With aging, we detected an overall decrease in metabolism and reductions in stress-associated proteins, proteases, and chaperones. With AMD, we observed upregulation of metabolic proteins involved in glycolysis, TCA, and fatty acid metabolism, with a concurrent decline in oxidative phosphorylation, suggesting a reprogramming of energy utilization. Additionally, we detected upregulation of proteins involved in the stress response and protein turnover. Predicted upstream regulators also showed divergent results, with inhibition of inflammation and immune response with aging and activation of these processes with AMD. Our results support the idea that AMD is not simply advanced aging but rather the culmination of perturbed protein homeostasis, defective bioenergetics, and increased oxidative stress within the aging RPE, exacerbated by environmental factors and the genetic background of an individual.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Anciano , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Envejecimiento , Estrés Oxidativo , Fosforilación Oxidativa
2.
Cells ; 11(13)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35805159

RESUMEN

Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, is characterized by the death of retinal pigment epithelium (RPE) and photoreceptors. One of the risk factors associated with developing AMD is the single nucleotide polymorphism (SNP) found within the gene encoding complement factor H (CFH). Part of the innate immune system, CFH inhibits alternative complement pathway activation. Multi-protein complexes called inflammasomes also play a role in the innate immune response. Previous studies reported that inflammasome activation may contribute to AMD pathology. In this study, we used primary human adult RPE cell cultures from multiple donors, with and without AMD, that were genotyped for the Y402H CFH risk allele. We found complement and inflammasome-related genes and proteins at basal levels in RPE tissue and cell cultures. Additionally, treatment with rotenone, bafilomycin A, and ATP led to inflammasome activation. Overall, the response to priming and activation was similar, irrespective of disease state or CFH genotype. While these data show that the inflammasome is present and active in RPE, our results suggest that inflammasome activation may not contribute to early AMD pathology.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Anciano , Genotipo , Humanos , Inflamasomas/metabolismo , Degeneración Macular/metabolismo , Polimorfismo de Nucleótido Simple , Epitelio Pigmentado de la Retina/metabolismo
3.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35056119

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. No universally effective treatments exist for atrophic or "dry" AMD, which results from loss of the retinal pigment epithelium (RPE) and photoreceptors and accounts for ≈80% of all AMD patients. Prior studies provide evidence for the involvement of mitochondrial dysfunction in AMD pathology. This study used induced pluripotent stem cell (iPSC) RPE derived from five AMD patients to test the efficacy of three drugs (AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), Metformin, trehalose) that target key processes in maintaining optimal mitochondrial function. The patient iPSC-RPE lines were used in a proof-of-concept drug screen, utilizing an analysis of RPE mitochondrial function following acute and extended drug exposure. Results show considerable variability in drug response across patient cell lines, supporting the need for a personalized medicine approach for treating AMD. Furthermore, our results demonstrate the feasibility of using iPSC-RPE from AMD patients to develop a personalized drug treatment regime and provide a roadmap for the future clinical management of AMD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA