Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Invest Radiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742928

RESUMEN

OBJECTIVE: Photon-counting detector computed tomography (PCD-CT) enables spectral data acquisition of CT angiographies allowing for reconstruction of virtual monoenergetic images (VMIs) in routine practice. Specifically, it has potential to reduce the blooming artifacts associated with densely calcified plaques. However, calcium blooming and iodine attenuation are inversely affected by energy level (keV) of the VMIs, creating a challenge for contrast media (CM) injection protocol optimization. A pragmatic and simple rule for calcium-dependent CM injection protocols is investigated and proposed for VMI-based coronary CT angiography with PCD-CT. MATERIALS AND METHODS: A physiological circulation phantom with coronary vessels including calcified lesions (maximum CT value >700 HU) with a 50% diameter stenosis was injected into at iodine delivery rates (IDRs) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g I/s. Images were acquired using a first-generation dual-source PCD-CT and reconstructed at various VMI levels (between 45 and 190 keV). Iodine attenuation in the coronaries was measured at each IDR for each keV, and blooming artifacts from the calcified lesions were assessed including stenosis grading error (as % overestimation vs true lumen). The IDR to achieve 300 HU at each VMI level was then calculated and compared with stenosis grading accuracy to establish a general rule for CM injection protocols. RESULTS: Plaque blooming artifacts and intraluminal iodine attenuation decreased with increasing keV. Fixed windowing (representing absolute worst case) resulted in stenosis overestimation from 77% ± 4% at 45 keV to 5% ± 2% at 190 keV, whereas optimized windowing resulted in overestimation from 29% ± 3% at 45 keV to 4% ± 1% at 190 keV. The required IDR to achieve 300 HU showed a strong linear correlation to VMI energy (R2 = 0.98). Comparison of this linear plot versus stenosis grading error and blooming artifact demonstrated that multipliers of 1, 2, and 3 times the reference IDR for theoretical clinical regimes of no, moderate, and severe calcification density, respectively, can be proposed as a general rule. CONCLUSIONS: This study provides a proof-of-concept in an anthropomorphic phantom for a simple pragmatic adaptation of CM injection protocols in coronary CT angiography with PCD-CT. The 1-2-3 rule demonstrates the potential for reducing the effects of calcium blooming artifacts on overall image quality.

2.
Invest Radiol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526041

RESUMEN

OBJECTIVES: Calcified plaques induce blooming artifacts in coronary computed tomography angiography (CCTA) potentially leading to inaccurate stenosis evaluation. Tungsten represents a high atomic number, experimental contrast agent with different physical properties than iodine. We explored the potential of a tungsten-based contrast agent for photon-counting detector (PCD) CCTA in heavily calcified coronary vessels. MATERIALS AND METHODS: A cardiovascular phantom exhibiting coronaries with calcified plaques was imaged on a first-generation dual-source PCD-CT. The coronaries with 3 different calcified plaques were filled with iodine and tungsten contrast media solutions equating to iodine and tungsten delivery rates (IDR and TDR) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g/s, respectively. Electrocardiogram-triggered sequential acquisitions were performed in the spectral mode (QuantumPlus). Virtual monoenergetic images (VMIs) were reconstructed from 40 to 190 keV in 1 keV increments. Blooming artifacts and percentage error stenoses from calcified plaques were quantified, and attenuation characteristics of both contrast media were recorded. RESULTS: Blooming artifacts from calcified plaques were most pronounced at 40 keV (78%) and least pronounced at 190 keV (58%). Similarly, percentage error stenoses were highest at 40 keV (48%) and lowest at 190 keV (2%), respectively. Attenuation of iodine decreased monotonically in VMIs from low to high keV, with the strongest decrease from 40 keV to 100 keV (IDR of 2.5 g/s: 1279 HU at 40 keV, 187 HU at 100 kV, and 35 HU at 190 keV). The attenuation of tungsten, on the other hand, increased monotonically as a function of VMI energy, with the strongest increase between 40 and 100 keV (TDR of 2.5 g/s: 202 HU at 40 keV, 661 HU at 100 kV, and 717 HU at 190 keV). For each keV level, the relationship between attenuation and IDR/TDR could be described by linear regressions (R2 ≥ 0.88, P < 0.001). Specifically, attenuation increased linearly when increasing the delivery rate irrespective of keV level or contrast medium. Iodine exhibited the highest relative increase in attenuation values at lower keV levels when increasing the IDR. Conversely, for tungsten, the greatest relative increase in attenuation values occurred at higher keV levels when increasing the TDR. When high keV imaging is desirable to reduce blooming artifacts from calcified plaques, IDR has to be increased at higher keV levels to maintain diagnostic vessel attenuation (ie, 300 HU), whereas for tungsten, TDR can be kept constant or can be even reduced at high keV energy levels. CONCLUSIONS: Tungsten's attenuation characteristics in relation to VMI energy levels are reversed to those of iodine, with tungsten exhibiting high attenuation values at high keV levels and vice versa. Thus, tungsten shows promise for high keV imaging CCTA with PCD-CT as-in distinction to iodine-both high vessel attenuation and low blooming artifacts from calcified plaques can be achieved.

3.
Invest Radiol ; 59(8): 577-582, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240647

RESUMEN

BACKGROUND: Previous research on the necessity to reduce the viscosity of contrast media (CM) by either prewarming CM before injection during computed tomography (CT) or by using less concentrated CM has yielded conflicting results. In addition, there is limited evidence on patient comfort. OBJECTIVES: The aim of the study was to examine if prewarming CM, with varying CM concentrations, is superior to CM at room temperature, with respect to patient comfort and safety in CT. MATERIALS AND METHODS: All elective patients scheduled for contrast-enhanced CT scans at Maastricht University Medical Center+ between October 27, 2021 and October 31, 2022 were eligible for inclusion when a questionnaire evaluating patient comfort was completed. This 1-year period was divided into 4 intervals (4 groups): group 1 (370 mg I/mL, 37°C), group 2 (370 mg I/mL, room temperature), group 3 (300 mg I/mL, 37°C), and group 4 (300 mg I/mL, room temperature). All CT scans were performed using state of the art equipment (Siemens Healthineers; SOMATOM Force and SOMATOM Definition AS, Forchheim, Germany). Contrast media injections were performed using a dual-head power injector (Stellant; Bayer Healthcare, Berlin, Germany) and individualized to body weight and/or tube voltage, depending on the CM protocols. After the CT scan, patients completed a questionnaire covering the primary outcomes comfort, pain, and adverse events such as feelings of heat, nausea, vomiting, itchiness, urticaria, difficulty breathing, dizziness, goosebumps, or an odd taste. Technicians were asked to report any adverse events, including extravasation and allergic-like reactions. The secondary outcome involved attenuation (in Hounsfield unit, HU), which was evaluated by assessing the HU of the coronary arteries for vascular CT, and liver enhancement in portal venous CT. The Kruskal-Wallis test was used for continuous scale outcomes and χ 2 tests for examining adverse events. RESULTS: Results showed no significant differences examining comfort score ( P = 0.054), pain sensation ( P = 0.469), extravasation ( P = 0.542), or allergic-like reaction ( P = 0.253). Significant differences among the 4 groups were found with respect to heat sensation and dizziness ( P = 0.005 and P = 0.047, respectively), showing small effect sizes. All other adverse effects showed no significant results. No significant differences were observed in coronary attenuation among the 4 groups in coronary CT angiography ( P = 0.113). When analyzing attenuation in portal venous CT scans, significant differences were found among the 4 groups ( P = 0.008). CONCLUSIONS: Administrating prewarmed CM is nonsuperior compared with CM at room temperature in relation to patient comfort and safety, regardless of CM concentration. These findings suggest that prewarming CM before usage is unnecessary, which will improve the efficiency of daily clinical workflow and brings environmentally friendly benefits.


Asunto(s)
Medios de Contraste , Comodidad del Paciente , Temperatura , Tomografía Computarizada por Rayos X , Humanos , Masculino , Medios de Contraste/efectos adversos , Femenino , Persona de Mediana Edad , Anciano , Encuestas y Cuestionarios , Viscosidad , Adulto , Seguridad del Paciente , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA