Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229087

RESUMEN

Adult zebrafish fins regenerate to their original size regardless of damage extent, providing a tractable model of organ size and scale control. Gain-of-function of voltage-gated K + channels expressed in fibroblast-lineage blastema cells promotes excessive fin outgrowth, leading to a long-finned phenotype. Similarly, inhibition of the Ca 2+ -dependent phosphatase calcineurin during regeneration causes dramatic fin overgrowth. However, Ca 2+ fluxes and their potential origins from dynamic membrane voltages have not been explored or linked to fin size restoration. We used fibroblast-lineage GCaMP imaging of regenerating adult fins to identify dynamic and heterogeneous Ca 2+ transients in distal blastema cells. Membrane depolarization of isolated regenerating fin fibroblasts triggered Ca 2+ spikes dependent on voltage-gated Ca 2+ channel activity. Single cell transcriptomics identified the voltage-gated Ca 2+ channels cacna1c (L-type channel), cacna1ba (N-type), and cacna1g (T-type) as candidate mediators of fibroblast-lineage Ca 2+ signaling. Small molecule inhibition revealed L- and/or N-type voltage-gated Ca 2+ channels act during regenerative outgrowth to restore fins to their original scale. Strikingly, cacna1g homozygous mutant zebrafish regenerated extraordinarily long fins due to prolonged outgrowth. The regenerated fins far exceeded their original length but with otherwise normal ray skeletons. Therefore, cacna1g mutants uniquely provide a genetic loss-of-function long-finned model that decouples developmental and regenerative fin outgrowth. Live GCaMP imaging of regenerating fins showed T-type Cacna1g channels enable Ca 2+ dynamics in distal fibroblast-lineage blastemal mesenchyme during the outgrowth phase. We conclude "bioelectricity" for fin size control likely entirely reflects voltage-modulated Ca 2+ dynamics in fibroblast-lineage blastemal cells that specifically and steadily decelerates outgrowth at a rate tuned to restore the original fin size.

2.
bioRxiv ; 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37461516

RESUMEN

Fraser Syndrome is a rare, multisystemic autosomal recessive disorder characterized by disrupted epithelial-mesenchymal associations upon loss of Fraser Complex genes. Disease manifestation and affected organs are highly variable. Digit malformations such as syndactyly are common but of unclear developmental origins. We explored if zebrafish fraser extracellular matrix complex subunit 1 (fras1) mutants model Fraser Syndrome-associated appendicular skeleton patterning defects. Approximately 10% of fras1 mutants survive to adulthood, displaying striking and varied fin abnormalities, including endochondral bone fusions, ectopic cartilage, and disrupted caudal fin symmetry. The fins of surviving fras1 mutants frequently have fewer and unbranched bony rays. fras1 mutant fins regenerate to their original size but with exacerbated ray branching and fin symmetry defects. Single cell RNA-Seq analysis, in situ hybridizations, and antibody staining show specific Fraser complex expression in the basal epidermis during regenerative outgrowth. Fras1 and Fraser Complex component Frem2 accumulate along the basal side of distal-most basal epidermal cells. Greatly reduced and mislocalized Frem2 accompanies loss of Fras1 in fras1 mutants. The Sonic hedgehog signaling between distal basal epidermis and adjacent mesenchymal pre-osteoblasts that promotes ray branching persists upon Fraser Complex loss. However, fras1 mutant regenerating fins exhibit extensive sub-epidermal blistering associated with a disorganized basal epidermis and adjacent pre-osteoblasts. We propose Fraser Complex-supported tissue layer adhesion enables robust integrated tissue morphogenesis involving the basal epidermis and osteoblasts. Further, we establish zebrafish fin development and regeneration as an accessible model to explore mechanisms of Fraser Syndrome-associated digit defects and Fraser Complex function at epithelial-mesenchymal interfaces.

3.
Dev Biol ; 502: 1-13, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37290497

RESUMEN

Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.


Asunto(s)
Transducción de Señal , Pez Cebra , Animales , Pez Cebra/metabolismo , Diferenciación Celular , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Receptores de Somatomedina/metabolismo , Aletas de Animales/metabolismo
4.
Circ Res ; 132(5): 545-564, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744494

RESUMEN

OBJECTIVE: Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS: SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS: BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (ß-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (ß-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS: Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Arrestina beta 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , ARN/metabolismo
5.
Dev Dyn ; 251(8): 1306-1321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35403297

RESUMEN

BACKGROUND: Caudal fin symmetry characterizes teleosts and likely contributes to their evolutionary success. However, the coordinated development and patterning of skeletal elements establishing external symmetry remains incompletely understood. We explore the spatiotemporal emergence of caudal skeletal elements in zebrafish to consider evolutionary and developmental origins of caudal fin symmetry. RESULTS: Transgenic reporters and skeletal staining reveal that the hypural diastema-defining gap between hypurals 2 and 3 forms early and separates progenitors of two plates of connective tissue. Two sets of central principal rays (CPRs) synchronously, sequentially, and symmetrically emerge around the diastema. The two dorsal- and ventral-most rays (peripheral principal rays, PPRs) arise independently and earlier than adjacent CPRs. Muscle and tendon markers reveal that different muscles attach to CPR and PPR sets. CONCLUSIONS: We propose that caudal fin symmetry originates from a central organizer that establishes the hypural diastema and bidirectionally patterns surrounding tissue into two plates of connective tissue and two mirrored sets of CPRs. Further, two peripheral organizers unidirectionally specify PPRs, forming a symmetric "composite" fin derived from three fields. Distinct CPR and PPR ontogenies may represent developmental modules conferring ray identities, muscle connections, and biomechanical properties. Our model contextualizes mechanistic studies of teleost fin morphological variation.


Asunto(s)
Diastema , Pez Cebra , Aletas de Animales/anatomía & histología , Animales , Animales Modificados Genéticamente , Evolución Biológica , Pez Cebra/anatomía & histología
6.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061172

RESUMEN

Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.


Asunto(s)
Aletas de Animales/fisiología , Expresión Génica Ectópica/fisiología , Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/anatomía & histología , Animales , Sistemas CRISPR-Cas , Calcineurina/metabolismo , Proliferación Celular , Expresión Génica Ectópica/genética , Éter , Canales de Potasio Éter-A-Go-Go/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Tamaño de los Órganos , Regeneración/fisiología , Transducción de Señal/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Stem Cell Reports ; 16(7): 1718-1734, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34143974

RESUMEN

Across species, hematopoietic stem and progenitor cells (HSPCs) arise during embryogenesis from a specialized arterial population, termed hemogenic endothelium. Here, we describe a mechanistic role for the epigenetic regulator, Enhancer of zeste homolog-1 (Ezh1), in vertebrate HSPC production via regulation of hemogenic commitment. Loss of ezh1 in zebrafish embryos favored acquisition of hemogenic (gata2b) and HSPC (runx1) fate at the expense of the arterial program (ephrinb2a, dll4). In contrast, ezh1 overexpression blocked hematopoietic progression via maintenance of arterial gene expression. The related Polycomb group subunit, Ezh2, functioned in a non-redundant, sequential manner, whereby inhibition had no impact on arterial identity, but was capable of blocking ezh1-knockdown-associated HSPC expansion. Single-cell RNA sequencing across ezh1 genotypes revealed a dropout of ezh1+/- cells among arterial endothelium associated with positive regulation of gene transcription. Exploitation of Ezh1/2 modulation has potential functional relevance for improving in vitro HSPC differentiation from induced pluripotent stem cell sources.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Hematopoyesis , Mutación con Pérdida de Función , Linfocitos/metabolismo , Ratones , RNA-Seq , Análisis de la Célula Individual
8.
Dev Biol ; 477: 177-190, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038742

RESUMEN

Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.


Asunto(s)
Aletas de Animales/embriología , Células Epidérmicas/fisiología , Epidermis/embriología , Proteínas Hedgehog/fisiología , Morfogénesis , Proteínas de Pez Cebra/fisiología , Aletas de Animales/citología , Aletas de Animales/metabolismo , Animales , Benzamidas/farmacología , Movimiento Celular , Epidermis/metabolismo , Receptor Patched-2/metabolismo , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/fisiología , Pez Cebra
9.
PLoS One ; 12(4): e0176543, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426753

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0159277.].

10.
Dev Biol ; 426(1): 84-96, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28372944

RESUMEN

Trimethylation of lysine 27 on histone 3 (H3K27me3) by the Polycomb repressive complex 2 (PRC2) contributes to localized and inherited transcriptional repression. Kdm6b (Jmjd3) is a H3K27me3 demethylase that can relieve repression-associated H3K27me3 marks, thereby supporting activation of previously silenced genes. Kdm6b is proposed to contribute to early developmental cell fate specification, cardiovascular differentiation, and/or later steps of organogenesis, including endochondral bone formation and lung development. We pursued loss-of-function studies in zebrafish to define the conserved developmental roles of Kdm6b. kdm6ba and kdm6bb homozygous deficient zebrafish are each viable and fertile. However, loss of both kdm6ba and kdm6bb shows Kdm6b proteins share redundant and pleiotropic roles in organogenesis without impacting initial cell fate specification. In the developing heart, co-expressed Kdm6b proteins promote cardiomyocyte proliferation coupled with the initial stages of cardiac trabeculation. While newly formed trabecular cardiomyocytes display a striking transient decrease in bulk cellular H3K27me3 levels, this demethylation is independent of collective Kdm6b. Our results indicate a restricted and likely locus-specific role for Kdm6b demethylases during heart ventricle maturation rather than initial cardiogenesis.


Asunto(s)
Ventrículos Cardíacos/crecimiento & desarrollo , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Histona Demetilasas/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Miocitos Cardíacos/citología , Organogénesis/fisiología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
11.
Development ; 144(7): 1165-1176, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28351866

RESUMEN

Zebrafish innately regenerate amputated fins by mechanisms that expand and precisely position injury-induced progenitor cells to re-form tissue of the original size and pattern. For example, cell signaling networks direct osteoblast progenitors (pObs) to rebuild thin cylindrical bony rays with a stereotypical branched morphology. Hedgehog/Smoothened (Hh/Smo) signaling has been variably proposed to stimulate overall fin regenerative outgrowth or promote ray branching. Using a photoconvertible patched2 reporter, we resolve active Hh/Smo output to a narrow distal regenerate zone comprising pObs and adjacent motile basal epidermal cells. This Hh/Smo activity is driven by epidermal Sonic hedgehog a (Shha) rather than Ob-derived Indian hedgehog a (Ihha), which nevertheless functions atypically to support bone maturation. Using BMS-833923, a uniquely effective Smo inhibitor, and high-resolution imaging, we show that Shha/Smo is functionally dedicated to ray branching during fin regeneration. Hh/Smo activation enables transiently divided clusters of Shha-expressing epidermis to escort pObs into similarly split groups. This co-movement likely depends on epidermal cellular protrusions that directly contact pObs only where an otherwise occluding basement membrane remains incompletely assembled. Progressively separated pObs pools then continue regenerating independently to collectively re-form a now branched skeletal structure.


Asunto(s)
Regeneración Ósea , Comunicación Celular , Células Epidérmicas , Proteínas Hedgehog/metabolismo , Osteoblastos/citología , Regeneración , Células Madre/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Aletas de Animales/efectos de los fármacos , Aletas de Animales/fisiología , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Benzamidas/farmacología , Regeneración Ósea/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Quinazolinas/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Alcaloides de Veratrum/farmacología , Proteínas de Pez Cebra/antagonistas & inhibidores
12.
PLoS One ; 11(8): e0159277, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27500400

RESUMEN

Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.


Asunto(s)
Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , ADN Recombinante/genética , Expresión Génica , Vectores Genéticos , Interferencia de ARN , Recombinación Genética , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo , Humanos , Ratas , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
13.
Development ; 143(6): 1041-54, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26893350

RESUMEN

Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector ß-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/ß-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/ß-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/ß-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.


Asunto(s)
Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Organogénesis , Vía de Señalización Wnt , Animales , Proteína Axina/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Proliferación Celular/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Válvulas Cardíacas/efectos de los fármacos , Ratones Transgénicos , Válvula Mitral/efectos de los fármacos , Válvula Mitral/embriología , Válvula Mitral/metabolismo , Miocardio/metabolismo , Organogénesis/efectos de los fármacos , Organogénesis/genética , Vía de Señalización Wnt/efectos de los fármacos
14.
BMC Genomics ; 16: 1100, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26699284

RESUMEN

BACKGROUND: Understanding the mechanisms by which neurons are generated and specified, and how they integrate into functional circuits is key to being able to treat disorders of the nervous system and acute brain trauma. Much of what we know about neuronal differentiation has been studied in developing embryos, but differentiation steps may be very different during adult neurogenesis. For this reason, we compared the transcriptomes of newly differentiated neurons in zebrafish embryos and adults. RESULTS: Using a 4tU RNA labeling method, we isolated and sequenced mRNA specifically from cells of one day old embryos and adults expressing the transgene HA-uprt-mcherry under control of the neuronal marker elavl3. By categorizing transcript products into different protein classes, we identified similarities and differences of gene usage between adult and embryonic neuronal differentiation. We found that neurons in the adult brain and in the nervous system of one day old embryos commonly use transcription factors - some of them identical - during the differentiation process. When we directly compared adult differentiating neurons to embryonic differentiating neurons, however, we found that during adult neuronal differentiation, the expression of neuropeptides and neurotransmitter pathway genes is more common, whereas classical developmental signaling through secreted molecules like Hedgehog or Wnt are less enriched, as compared to embryonic stages. CONCLUSIONS: We conclude that both adult and embryonic differentiating neurons show enriched use of transcription factors compared to surrounding cells. However, adult and embryonic developing neurons use alternative pathways to differentiate. Our study provides evidence that adult neuronal differentiation is distinct from the better characterized embryonic neuronal differentiation process. This important insight and the lists of enriched genes we have identified will now help pave the way to a better understanding of the mechanisms of embryonic and adult neuronal differentiation and how to manipulate these processes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neurogénesis , Neuronas/citología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Neuropéptidos/genética , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Factores de Transcripción/genética
15.
Dev Biol ; 407(1): 158-72, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26100917

RESUMEN

The formation of intricately organized aortic and pulmonic valves from primitive endocardial cushions of the outflow tract is a remarkable accomplishment of embryonic development. While not always initially pathologic, developmental semilunar valve (SLV) defects, including bicuspid aortic valve, frequently progress to a disease state in adults requiring valve replacement surgery. Disrupted embryonic growth, differentiation, and patterning events that "trigger" SLV disease are coordinated by gene expression changes in endocardial, myocardial, and cushion mesenchymal cells. We explored roles of chromatin regulation in valve gene regulatory networks by conditional inactivation of the Brg1-associated factor (BAF) chromatin remodeling complex in the endocardial lineage. Endocardial Brg1-deficient mouse embryos develop thickened and disorganized SLV cusps that frequently become bicuspid and myxomatous, including in surviving adults. These SLV disease-like phenotypes originate from deficient endocardial-to-mesenchymal transformation (EMT) in the proximal outflow tract (pOFT) cushions. The missing cells are replaced by compensating neural crest or other non-EMT-derived mesenchyme. However, these cells are incompetent to fully pattern the valve interstitium into distinct regions with specialized extracellular matrices. Transcriptomics reveal genes that may promote growth and patterning of SLVs and/or serve as disease-state biomarkers. Mechanistic studies of SLV disease genes should distinguish between disease origins and progression; the latter may reflect secondary responses to a disrupted developmental system.


Asunto(s)
Válvula Aórtica/embriología , ADN Helicasas/fisiología , Endocardio/embriología , Enfermedades de las Válvulas Cardíacas/etiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Factores de Transcripción NFATC/fisiología
16.
Development ; 141(23): 4500-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25377552

RESUMEN

Identifying coronary artery progenitors and their developmental pathways could inspire novel regenerative treatments for heart disease. Multiple sources of coronary vessels have been proposed, including the sinus venosus (SV), endocardium and proepicardium, but their relative contributions to the coronary circulation and the molecular mechanisms regulating their development are poorly understood. We created an ApjCreER mouse line as a lineage-tracing tool to map SV-derived vessels onto the heart and compared the resulting lineage pattern with endocardial and proepicardial contributions to the coronary circulation. The data showed a striking compartmentalization to coronary development. ApjCreER-traced vessels contributed to a large number of arteries, capillaries and veins on the dorsal and lateral sides of the heart. By contrast, untraced vessels predominated in the midline of the ventral aspect and ventricular septum, which are vessel populations primarily derived from the endocardium. The proepicardium gave rise to a smaller fraction of vessels spaced relatively uniformly throughout the ventricular walls. Dorsal (SV-derived) and ventral (endocardial-derived) coronary vessels developed in response to different growth signals. The absence of VEGFC, which is expressed in the epicardium, dramatically inhibited dorsal and lateral coronary growth but left vessels on the ventral side unaffected. We propose that complementary SV-derived and endocardial-derived migratory routes unite to form the coronary vasculature and that the former requires VEGFC, revealing its role as a tissue-specific mediator of blood endothelial development.


Asunto(s)
Linaje de la Célula/fisiología , Vasos Coronarios/embriología , Atrios Cardíacos/embriología , Neovascularización Fisiológica/fisiología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular/fisiología , Vasos Coronarios/citología , Atrios Cardíacos/citología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Microscopía Fluorescente
17.
PLoS One ; 9(3): e92217, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643048

RESUMEN

Transgenic zebrafish research has provided valuable insights into gene functions and cell behaviors directing vertebrate development, physiology, and disease models. Most approaches use constitutive transgene expression and therefore do not provide control over the timing or levels of transgene induction. We describe an inducible gene expression system that uses new tissue-specific zebrafish transgenic lines that express the Gal4 transcription factor fused to the estrogen-binding domain of the human estrogen receptor. We show these Gal4-ERT driver lines confer rapid, tissue-specific induction of UAS-controlled transgenes following tamoxifen exposure in both embryos and adult fish. We demonstrate how this technology can be used to define developmental windows of gene function by spatiotemporal-controlled expression of constitutively active Notch1 in embryos. Given the array of existing UAS lines, the modular nature of this system will enable many previously intractable zebrafish experiments.


Asunto(s)
Proteínas Recombinantes de Fusión/genética , Activación Transcripcional/efectos de los fármacos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Especificidad de Órganos , Factor 1 de Elongación Peptídica/genética , Regiones Promotoras Genéticas , Conejos , Receptor Notch1/biosíntesis , Receptor Notch1/genética , Receptores de Estrógenos/biosíntesis , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión/biosíntesis , Tamoxifeno/farmacología , Factores de Transcripción/genética , Transgenes , Proteínas de Xenopus/genética , Xenopus laevis/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Globinas beta/genética
18.
Cell Rep ; 6(3): 482-98, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24485659

RESUMEN

Zebrafish fully regenerate lost bone, including after fin amputation, through a process mediated by dedifferentiated, lineage-restricted osteoblasts. Mechanisms controlling the osteoblast regenerative program from its initiation through reossification are poorly understood. We show that fin amputation induces a Wnt/ß-catenin-dependent epithelial to mesenchymal transformation (EMT) of osteoblasts in order to generate proliferative Runx2(+) preosteoblasts. Localized Wnt/ß-catenin signaling maintains this progenitor population toward the distal tip of the regenerative blastema. As they become proximally displaced, preosteoblasts upregulate sp7 and subsequently mature into re-epithelialized Runx2(-)/sp7(+) osteoblasts that extend preexisting bone. Autocrine bone morphogenetic protein (BMP) signaling promotes osteoblast differentiation by activating sp7 expression and counters Wnt by inducing Dickkopf-related Wnt antagonists. As such, opposing activities of Wnt and BMP coordinate the simultaneous demand for growth and differentiation during bone regeneration. This hierarchical signaling network model provides a conceptual framework for understanding innate bone repair and regeneration mechanisms and rationally designing regenerative therapeutics.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Regeneración Ósea/fisiología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Aletas de Animales/citología , Aletas de Animales/fisiología , Animales , Regeneración Ósea/genética , Desdiferenciación Celular/genética , Linaje de la Célula , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Osteoblastos/citología , Osteoblastos/metabolismo , Transducción de Señal/genética , Proteínas Smad/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , beta Catenina/metabolismo
19.
Nat Protoc ; 9(2): 410-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24457332

RESUMEN

Transcriptional profiling is a powerful approach for studying mouse development, physiology and disease models. Here we describe a protocol for mouse thiouracil tagging (TU tagging), a transcriptome analysis technology that includes in vivo covalent labeling, purification and analysis of cell type-specific RNA. TU tagging enables the isolation of RNA from a given cell population of a complex tissue, avoiding transcriptional changes induced by cell isolation trauma, as well as the identification of actively transcribed RNAs and not preexisting transcripts. Therefore, in contrast to other cell-specific transcriptional profiling methods based on the purification of tagged ribosomes or nuclei, TU tagging provides a direct examination of transcriptional regulation. We describe how to (i) deliver 4-thiouracil to transgenic mice to thio-label cell lineage-specific transcripts, (ii) purify TU-tagged RNA and prepare libraries for Illumina sequencing and (iii) follow a straightforward bioinformatics workflow to identify cell type-enriched or differentially expressed genes. Tissue containing TU-tagged RNA can be obtained in 1 d, RNA-seq libraries can be generated within 2 d and, after sequencing, an initial bioinformatics analysis can be completed in 1 additional day.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN/aislamiento & purificación , Tiouracilo , Animales , Biología Computacional/métodos , Ratones , Ratones Transgénicos , ARN/metabolismo , Tiouracilo/metabolismo
20.
Dev Cell ; 25(2): 169-81, 2013 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-23602386

RESUMEN

Hair follicle stem cells (bulge cells) are essential for hair regeneration and early epidermal repair after wounding. Here we show that Brg1, a key enzyme in the chromatin-remodeling machinery, is dynamically expressed in bulge cells to control tissue regeneration and repair. In mice, sonic hedgehog (Shh) signals Gli to activate Brg1 in bulge cells to begin hair regeneration, whereas Brg1 recruits NF-κB to activate Shh in matrix cells to sustain hair growth. Such reciprocal Brg1-Shh interaction is essential for hair regeneration. Moreover, Brg1 is indispensable for maintaining the bulge cell reservoir. Without Brg1, bulge cells are depleted over time, partly through the ectopic expression of the cell-cycle inhibitor p27(Kip1). Also, bulge Brg1 is activated by skin injury to facilitate early epidermal repair. Our studies demonstrate a molecular circuit that integrates chromatin remodeling (Brg1), transcriptional regulation (NF-κB, Gli), and intercellular signaling (Shh) to control bulge stem cells during tissue regeneration.


Asunto(s)
ADN Helicasas/fisiología , Células Epidérmicas , Folículo Piloso/citología , Queratinocitos/citología , Proteínas Nucleares/fisiología , Regeneración/fisiología , Células Madre/citología , Factores de Transcripción/fisiología , Cicatrización de Heridas/fisiología , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Epidermis/lesiones , Epidermis/metabolismo , Folículo Piloso/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Inmunoprecipitación , Hibridación in Situ , Queratinocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Luciferasas/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteína con Dedos de Zinc GLI1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA