RESUMEN
SUMMARY: Joint analysis of mass spectrometry images (MS images) and microscopy images of hematoxylin and eosin (H&E) stained tissues assists pathologists in characterizing the morphological structure of the tissues, and in performing diagnosis. Unfortunately, the analysis is undermined by substantial differences between these modalities in terms of aspect ratios, spatial resolution, number of channels in each image, as well as by large global or small local elastic spatial deformations of one image with respect to the other. Therefore, accurate coregistration of the images is a critical pre-requisite for their joint interpretation. We introduce MSIreg, an open-source R package for coregistration of MSI and H&E images. MSIreg is designed for high-dimensional MSI experiments where each spatial location is represented by thousands of mass features. Unlike most existing coregistration methods, MSIreg implements a landmark free workflow, and quantitative metrics for performance evaluation. We evaluate the performance of MSIreg on six case studies, including coregistration of contiguous tissues with large deformations, as well as simultaneous coregistration of 29 tissue microarray cores. AVAILABILITY AND IMPLEMENTATION: The R package, installation instructions, and fully reproducible vignettes describing methods and Case Studies are available open-source under the GPL-3.0 license at https://github.com/sslakkimsetty/msireg/.
Asunto(s)
Espectrometría de Masas , Programas Informáticos , Espectrometría de Masas/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
We describe a sequential multistaining protocol for immunohistochemistry, immunofluorescence and CyTOF imaging for formalin-fixed, paraffin-embedded specimens (FFPE) in the formalin gas-phase (FOLGAS), enabling sequential multistaining, independent from the primary and secondary antibodies and retrieval. Histomorphologic details are preserved, and crossreactivity and loss of signal intensity are not detectable. Combined with a DAB-based hydrophobic masking of metal-labeled primary antibodies, FOLGAS allows the extended use of CyTOF imaging in FFPE sections.