Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
iScience ; 26(8): 107284, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37609636

RESUMEN

Natural killer (NK) cells are currently used in clinical trials to treat tumors. However, such therapies still suffer from problems such as donor variability, reproducibility, and more, which prevent a wider use of NK cells therapeutics. Here we show a potential immunotherapy combining NK cell-mediated tumor eradiation and long non-coding (lnc) RNAs. We overexpressed the interferon (IFN) γ secretion-enhancing lncRNA nettoie Salmonella pas Theiler's (NeST) in the NK cell-like cell line YTS. YTS cells express the co-stimulatory receptor 2B4 whose main ligand is CD48. On YTS cells, 2B4 functions by direct activation. We showed that NeST overexpression in YTS cells resulted in increased IFNγ release upon interaction with CD48 (selectively enhanced (se)YTS cells). Following irradiation, the seYTS cells lost proliferation capacity but were still able to maintain their killing and IFNγ secretion capacities. Finally, we demonstrated that irradiated seYTS inhibit tumor growth in vivo. Thus, we propose seYTS cells as off-the-shelve therapy for CD48-expressing tumors.

2.
J Cell Biol ; 222(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37389656

RESUMEN

The GPI-anchoring pathway plays important roles in normal development and immune modulation. MHC Class I Polypeptide-related Sequence A (MICA) is a stress-induced ligand, downregulated by human cytomegalovirus (HCMV) to escape immune recognition. Its most prevalent allele, MICA*008, is GPI-anchored via an uncharacterized pathway. Here, we identify cleft lip and palate transmembrane protein 1-like protein (CLPTM1L) as a GPI-anchoring pathway component and show that during infection, the HCMV protein US9 downregulates MICA*008 via CLPTM1L. We show that the expression of some GPI-anchored proteins (CD109, CD59, and MELTF)-but not others (ULBP2, ULBP3)-is CLPTM1L-dependent, and further show that like MICA*008, MELTF is downregulated by US9 via CLPTM1L during infection. Mechanistically, we suggest that CLPTM1L's function depends on its interaction with a free form of PIG-T, normally a part of the GPI transamidase complex. We suggest that US9 inhibits this interaction and thereby downregulates the expression of CLPTM1L-dependent proteins. Altogether, we report on a new GPI-anchoring pathway component that is targeted by HCMV.


Asunto(s)
Infecciones por Citomegalovirus , Proteínas de la Membrana , Humanos , Alelos , Citomegalovirus , Proteínas de la Membrana/genética , Proteínas de Neoplasias , Factores de Transcripción , Infecciones por Citomegalovirus/metabolismo
3.
PLoS One ; 17(3): e0264897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294457

RESUMEN

NK-92 cells are an off-the-shelf, cell-based immunotherapy currently in clinical trials for a variety of cancer types. As the most 'NK-like' cell line available, it is also an important research tool. To date, NK-92 cells have been cultivated in a costly and time-consumingly prepared specialized medium, complicating research with these cells. Here we show that NK-92 cells grow in the comparatively user-friendly RPMI medium supplemented with IL-2. We demonstrate that their metabolic activity and replication rates are even improved in RPMI. Furthermore, they can be grown in cell culture dishes and do not need to be expanded in ventilated flasks. We show that in RPMI the cells retain functional characteristics relating to receptor expression, IFN-γ secretion, and killing. Our findings will enable more researchers to work with and manipulate this cell line, hopefully leading to further discoveries and improved therapies.


Asunto(s)
Citotoxicidad Inmunológica , Neoplasias , Técnicas de Cultivo de Célula , Medios de Cultivo/metabolismo , Humanos , Inmunoterapia , Células Asesinas Naturales/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia
4.
J Immunother Cancer ; 8(1)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32503945

RESUMEN

BACKGROUND: The use of checkpoint inhibitors has revolutionized cancer therapy. Unfortunately, these therapies often cause immune-related adverse effects, largely due to a lack of tumor specificity. METHODS: We stained human natural killer cells using fusion proteins composed of the extracellular portion of various tumor markers fused to the Fc portion of human IgG1, and identified Nectin4 as a novel TIGIT ligand. Next, we generated a novel Nectin4 blocking antibody and demonstrated its efficacy as a checkpoint inhibitor in killing assays and in vivo. RESULTS: We identify Nectin4 to be a novel ligand of TIGIT. We showed that, as opposed to all other known TIGIT ligands, which bind also additional receptors, Nectin4 interacts only with TIGIT. We show that the TIGIT-Nectin4 interaction inhibits natural killer cell activity, a critical part of the innate immune response. Finally, we developed blocking Nectin4 antibodies and demonstrated that they enhance tumor killing in vitro and in vivo. CONCLUSION: We discovered that Nectin4 is a novel ligand for TIGIT and demonstrated that specific antibodies against it enhance tumor cell killing in vitro and in vivo. Since Nectin4 is expressed almost exclusively on tumor cells, our Nectin4-blocking antibodies represent a combination of cancer specificity and immune checkpoint activity, which may prove more effective and safe for cancer immunotherapy.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Inmunoterapia/métodos , Receptores Inmunológicos/metabolismo , Animales , Femenino , Humanos , Ligandos , Ratones
5.
Sci Rep ; 9(1): 1351, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718650

RESUMEN

Rheumatoid Arthritis (RA) causes chronic inflammation of joints. The cytokines TNFα and IFNγ are central players in RA, however their source has not been fully elucidated. Natural Killer (NK) cells are best known for their role in elimination of viral-infected and transformed cells, and they secrete pro-inflammatory cytokines. NK cells are present in the synovial fluids (SFs) of RA patients and are considered to be important in bone destruction. However, the phenotype and function of NK cells in the SFs of patients with erosive deformative RA (DRA) versus non-deformative RA (NDRA) is poorly characterized. Here we characterize the NK cell populations present in the blood and SFs of DRA and NDRA patients. We demonstrate that a distinct population of activated synovial fluid NK (sfNK) cells constitutes a large proportion of immune cells found in the SFs of DRA patients. We discovered that although sfNK cells in both DRA and NDRA patients have similar phenotypes, they function differently. The DRA sfNK secrete more TNFα and IFNγ upon exposure to IL-2 and IL-15. Consequently, we suggest that sfNK cells may be a marker for more severely destructive RA disease.


Asunto(s)
Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Células Asesinas Naturales/inmunología , Líquido Sinovial/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/sangre , Estudios de Casos y Controles , Femenino , Humanos , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Receptores de Células Asesinas Naturales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
iScience ; 11: 466-473, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30661002

RESUMEN

Long, non-coding RNAs (lncRNAs) are involved in the regulation of many cellular processes. The lncRNA IFNG-AS1 was found to strongly influence the responses to several pathogens in mice by increasing interferon gamma (IFNγ) secretion. Studies have looked at IFNG-AS1 in T cells, yet IFNG-AS1 function in natural killer cells (NKs), an important source of IFNγ, remains unknown. Here, we show a previously undescribed sequence of IFNG-AS1 and report that it may be more abundant in cells than previously thought. Using primary human NKs and an NK line with IFNG-AS1 overexpression, we show that IFNG-AS1 is quickly induced upon NK cell activation, and that IFNG-AS1 overexpression leads to increased IFNγ secretion. Taken together, our work expands IFNG-AS1's activity to the innate arm of the type I immune response, helping to explain its notable effect in animal models of disease.

7.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768178

RESUMEN

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Asunto(s)
Memoria Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Transcriptoma/inmunología , Útero/inmunología , Animales , Línea Celular Tumoral , Decidua/inmunología , Decidua/metabolismo , Femenino , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Embarazo , Útero/citología , Factor A de Crecimiento Endotelial Vascular/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Hum Antibodies ; 25(3-4): 111-119, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28035916

RESUMEN

One of the most exciting fields in modern medicine is immunotherapy, treatment which looks to harness the power of the immune system to fight disease. A particularly effective strategy uses antibodies designed to influence the activity levels of the immune system. Here we look at two receptors - TIGIT and DNAM-1 - which bind the same ligands but have opposite effects on immune cells, earning them the label `paired receptors'. Importantly, natural killer cells and cytotoxic T cells express both of these receptors, and in certain cases their effector functions are dictated by TIGIT or DNAM-1 signaling. Agonist and antagonist antibodies targeting either TIGIT or DNAM-1 present many therapeutic options for diseases spanning from cancer to auto-immunity. In this review we present cases in which the modulation of these receptors holds potential for the development of novel therapies.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Receptores Inmunológicos/inmunología , Antígenos de Diferenciación de Linfocitos T/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Regulación de la Expresión Génica , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Unión Proteica , Receptor Cross-Talk/inmunología , Receptores Inmunológicos/agonistas , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/genética , Transducción de Señal , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología
9.
Cell Host Microbe ; 20(4): 527-534, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27736647

RESUMEN

Natural killer (NK) cells form an important arm of the innate immune system and function to combat a wide range of invading pathogens, ranging from viruses to bacteria. However, the means by which NK cells accomplish recognition of pathogens with a limited repertoire of receptors remain largely unknown. In the current study, we describe the recognition of an emerging fungal pathogen, Candida glabrata, by the human NK cytotoxic receptor NKp46 and its mouse ortholog, NCR1. Using NCR1 knockout mice, we observed that this receptor-mediated recognition was crucial for controlling C. glabrata infection in vitro and in vivo. Finally, we delineated the fungal ligands to be the C. glabrata adhesins Epa1, Epa6, and Epa7 and demonstrated that clearance of systemic C. glabrata infections in vivo depends on their recognition by NCR1. As NKp46 and NCR1 have been previously shown to bind viral adhesion receptors, we speculate that NKp46/NCR1 may be a novel type of pattern recognition receptor.


Asunto(s)
Antígenos Ly/metabolismo , Candida glabrata/inmunología , Proteínas Fúngicas/metabolismo , Células Asesinas Naturales/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Animales , Antígenos Ly/genética , Candidiasis/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética
10.
Cell Rep ; 10(6): 968-982, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25683719

RESUMEN

Natural killer (NK) cells mediate innate immune responses against hazardous cells and are particularly important for the control of human cytomegalovirus (HCMV). NKG2D is a key NK activating receptor that recognizes a family of stress-induced ligands, including MICA, MICB, and ULBP1-6. Notably, most of these ligands are targeted by HCMV proteins and a miRNA to prevent the killing of infected cells by NK cells. A particular highly prevalent MICA allele, MICA∗008, is considered to be an HCMV-resistant "escape variant" that confers advantage to human NK cells in recognizing infected cells. However, here we show that HCMV uses its viral glycoprotein US9 to specifically target MICA∗008 and thus escapes NKG2D attack. The finding that HCMV evolved a protein dedicated to countering a single host allele illustrates the dynamic co-evolution of host and pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA