Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Scientifica (Cairo) ; 2018: 2308619, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30515345

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite with worldwide distribution. Felines are the definitive hosts supporting the complete life cycle of T. gondii. However, other warm-blooded animals such as rodents and humans can also be infected. Infection of such secondary hosts results in long-term infection characterized by the presence of tissue cysts in the brain and other organs. While it is known that T. gondii infection in rodents is associated with behavioral changes, the mechanisms behind these changes remain unclear. Alterations of the host intestinal microflora are recognized as a prominent role player in shaping host behavior and cognition. It has been shown that acute T. gondii infection of mice results in microflora changes as a result of gastrointestinal inflammation in inbred mouse models. The long-term effects of chronic T. gondii infection on microbial communities, however, are unknown. In this study, after we verified using our model in terms of measuring microflora changes during an acute episode of toxoplasmosis, we assessed the microbiome changes that occur during a long-term infection; then we further investigated these changes in a follow-up study of chronic infection. These analyses were performed by constructing and sequencing 16S rRNA amplicon DNA libraries from small intestine fecal specimens. We found that acute infection with the GT1 strain of T. gondii caused an enrichment of Bacteroidetes compared with controls in CD1 mice. Strikingly, this enrichment upheld throughout long-term chronic infection. The potential biological consequences of this alteration in rodents and humans should be subjected to further exploration.

2.
Exp Parasitol ; 145: 110-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25131777

RESUMEN

We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 min of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Inmunoglobulina G/sangre , Toxoplasma/efectos de la radiación , Rayos Ultravioleta , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Encéfalo/parasitología , Membrana Celular/efectos de la radiación , Citocinas/genética , Citocinas/metabolismo , Inmunoglobulina G/biosíntesis , Cinética , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Protozoario/análisis , ARN Ribosómico 5S/análisis , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Toxoplasma/inmunología , Toxoplasma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA