Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-23727875

RESUMEN

The advent of new not yet legally regulated psychoactive substances sold over the Internet has created a challenge for clinical toxicology and drug testing laboratories. The routine use of immunoassay screening may no longer be the optimal solution in many instances since the number of analytes covered is becoming insufficient. The aim of this work was to design, validate and apply a multi-component LC-MS/MS method suitable for screening of a large number of target analytes belonging to the class of new psychoactive substances - legal highs. The analytical method was using a five-fold dilution of urine with internal standard (pethidine-d5) and injection of 2µL. The chromatographic system was using a 1.7-µm 100mm×2.1mm Ethylene Bridged Hybrid (BEH) C18 column and gradient elution with a flow rate of 600µL/min. Solvent A consisted of 0.1% formic acid and Solvent B was 100% acetonitrile. The gradient elution application was designed to have a wide polarity coverage with total run time of 4.0min. The tandem mass spectrometer was using an electrospray interface and operated in positive mode. Selected reaction monitoring of two ion transitions was used for each of 26 analytes. Method validation demonstrated limited influence from urine matrix, linear response within the measuring range (0.1-10µg/mL), acceptable imprecision in quantification (CV<15%). Some analytes were found not to be stable in urine upon storage. The method was successfully applied in routine drug testing. A total of 87 positive samples with 100 analytical findings were found to contain O-desmethyl-cis-tramadol (mostly without mitragynine), methylenedioxypyrovalerone, 4-fluoroamphetamine, methoxetamine, desoxypipradol, 4-fluoromethcathinone, 5,6-methylenedioxy-2-aminoindane, 4-methylmethcathinone, 3-fluoromethcathinone, 4-hydroxy-N-methyl-N-ethyltryptamine, α-methylamino-butyrophenone and 4-methoxymethcathinone.


Asunto(s)
Cromatografía Liquida/métodos , Drogas de Diseño/análisis , Psicotrópicos/orina , Espectrometría de Masas en Tándem/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Suecia
2.
Artículo en Inglés | MEDLINE | ID: mdl-23153637

RESUMEN

In this study a rapid liquid chromatography-time-of-flight mass spectrometry method was developed, validated and applied in order to evaluate the potential of this technique for routine urine drug testing. Approximately 800 authentic patient samples were analyzed for amphetamines (amphetamine and methamphetamine), opiates (morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine and codeine-6-glucuronide) and buprenorphines (buprenorphine and buprenorphine-glucuronide) using immunochemical screening assays and mass spectrometry confirmation methods for comparison. The chromatographic application utilized a rapid gradient with high flow and a reversed phase column with 1.8 µm particles. Total analysis time was 4 min. The mass spectrometer operated with an electrospray interface in positive mode with a resolution power of >10,000 at m/z 956. The applied reporting limits were 100 ng/mL for amphetamines and opiates, and 5 ng/mL for buprenorphines, with lower limits of quantification were 2.8-41 ng/mL. Calibration curves showed a linear response with coefficients of correlation of 0.97-0.99. The intra- and interday imprecision in quantification at the reporting limits were <10% for all analytes but for buprenorphines <20%. Method validation data met performance criteria for a qualitative and quantitative method. The liquid chromatography-time-of-flight mass spectrometry method was found to be more selective than the immunochemical method by producing lower rates of false positives (0% for amphetamines and opiates; 3.2% for buprenorphines) and negatives (1.8% for amphetamines; 0.6% for opiates; 0% for buprenorphines). The overall agreement between the two screening methods was between 94.2 and 97.4%. Comparison of data with the confirmation (LC-MS) results for all individual 9 analytes showed that most deviating results were produced in samples with low levels of analytes. False negatives were mainly related to failure of detected peak to meet mass accuracy criteria (±20 mDa). False positives was related to presence of interfering peaks meeting mass accuracy and retention time criteria and occurred mainly at low levels. It is concluded that liquid chromatography-time-of-flight mass spectrometry has potential both as a complement and as replacement of immunochemical screening assays.


Asunto(s)
Cromatografía Liquida/métodos , Drogas Ilícitas/orina , Espectrometría de Masa por Ionización de Electrospray/métodos , Detección de Abuso de Sustancias/métodos , Urinálisis/métodos , Anfetaminas/química , Anfetaminas/orina , Buprenorfina/química , Buprenorfina/orina , Codeína/análogos & derivados , Codeína/química , Codeína/orina , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Drogas Ilícitas/química , Modelos Lineales , Morfina/química , Morfina/orina , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA