Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Drug Resist Updat ; 77: 101138, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39167981

RESUMEN

AIMS: To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization. METHODS AND RESULTS: Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose. CONCLUSIONS: Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.

2.
Front Immunol ; 15: 1350344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440731

RESUMEN

Introduction: Outer membrane vesicles (OMVs) of Neisseria meningitidis in the group B-directed vaccine MenB-4C (BexseroR) protect against infections with Neisseria gonorrhoeae. The immunological basis for protection remains unclear. N. meningitidis OMV vaccines generate human antibodies to N. meningitidis and N. gonorrhoeae lipooligosaccharide (LOS/endotoxin), but the structural specificity of these LOS antibodies is not defined. Methods: Ten paired human sera obtained pre- and post-MenB-4C immunization were used in Western blots to probe N. meningitidis and N. gonorrhoeae LOS. Post-MenB-4C sera (7v5, 19v5, and 17v5), representing individual human variability in LOS recognition, were then used to interrogate structurally defined LOSs of N. meningitidis and N. gonorrhoeae strains and mutants and studied in bactericidal assays. Results and discussion: Post-MenB-4C sera recognized both N. meningitidis and N. gonorrhoeae LOS species, ~10% of total IgG to gonococcal OMV antigens. N. meningitidis and N. gonorrhoeae LOSs were broadly recognized by post-IgG antibodies, but with individual variability for LOS structures. Deep truncation of LOS, specifically a rfaK mutant without α-, ß-, or γ-chain glycosylation, eliminated LOS recognition by all post-vaccine sera. Serum 7v5 IgG antibodies recognized the unsialyated L1 α-chain, and a 3-PEA-HepII or 6-PEA-HepII was part of the conformational epitope. Replacing the 3-PEA on HepII with a 3-Glc blocked 7v5 IgG antibody recognition of N. meningitidis and N. gonorrhoeae LOSs. Serum 19v5 recognized lactoneotetrose (LNT) or L1 LOS-expressing N. meningitidis or N. gonorrhoeae with a minimal α-chain structure of Gal-Glc-HepI (L8), a 3-PEA-HepII or 6-PEA-HepII was again part of the conformational epitope and a 3-Glc-HepII blocked 19v5 antibody binding. Serum 17v5 LOS antibodies recognized LNT or L1 α-chains with a minimal HepI structure of three sugars and no requirement for HepII modifications. These LOS antibodies contributed to the serum bactericidal activity against N. gonorrhoeae. The MenB-4C vaccination elicits bactericidal IgG antibodies to N. gonorrhoeae conformational epitopes involving HepI and HepII glycosylated LOS structures shared between N. meningitidis and N. gonorrhoeae. LOS structures should be considered in next-generation gonococcal vaccine design.


Asunto(s)
Inmunoglobulina G , Lipopolisacáridos , Neisseria gonorrhoeae , Humanos , Polisacáridos , Antibacterianos , Antígenos Bacterianos , Epítopos
3.
Microb Genom ; 9(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850987

RESUMEN

Neisseria meningitidis (Nm) is a bacterial pathogen responsible for invasive meningococcal disease. Though typically colonizing the nasopharynx, multiple outbreaks of meningococcal urethritis were first reported in 2015-2016; outbreaks originally presumed to be caused by Neisseria gonorrhoeae (Ng). Genomic analysis revealed that the Nm isolates causing these outbreaks were a distinct clade, and had integrated gonococcal DNA at multiple genomic sites, including the gonococcal denitrification apparatus aniA-norB, a partial gonococcal operon of five genes containing ispD, and the acetylglutamate kinase gene argB with the adjacent gonococcal locus NGO0843. The urethritis isolates had also deleted the group C capsule biosynthesis genes cssA/B/C and csc, resulting in loss of capsule. Collectively, these isolates form the N. meningitidis urethritis clade (NmUC). Genomic analysis of recent (2016-2022) NmUC isolates revealed that the genomic features have been maintained in the clade, implying that they are important for NmUC's status as a urogenital pathogen. Furthermore, the analysis revealed the emergence of a sub-clade, designated NmUC-B, phylogenetically separated from the earlier NmUC-A. This sub-clade has integrated additional gonococcal alleles into the genome, including alleles associated with antimicrobial resistance. NmUC continues to adapt to a urethral niche and evolve as a urogenital pathogen.


Asunto(s)
Gonorrea , Infecciones Meningocócicas , Neisseria meningitidis , Uretritis , Humanos , Uretritis/epidemiología , Uretritis/microbiología , Infecciones Meningocócicas/microbiología , Gonorrea/microbiología , Genómica , Evolución Molecular
4.
Nat Med ; 29(9): 2334-2346, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640860

RESUMEN

Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037 .


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos ampliamente neutralizantes
5.
NPJ Vaccines ; 8(1): 98, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433788

RESUMEN

As part of a multicenter study evaluating homologous and heterologous COVID-19 booster vaccines, we assessed the magnitude, breadth, and short-term durability of binding and pseudovirus-neutralizing antibody (PsVNA) responses following a single booster dose of NVX-CoV2373 in adults primed with either Ad26.COV2.S, mRNA-1273, or BNT162b2 vaccines. NVX-CoV2373 as a heterologous booster was immunogenic and associated with no safety concerns through Day 91. Fold-rises in PsVNA titers from baseline (Day 1) to Day 29 were highest for prototypic D614G variant and lowest for more recent Omicron sub-lineages BQ.1.1 and XBB.1. Peak humoral responses against all SARS-CoV-2 variants were lower in those primed with Ad26.COV2.S than with mRNA vaccines. Prior SARS CoV-2 infection was associated with substantially higher baseline PsVNA titers, which remained elevated relative to previously uninfected participants through Day 91. These data support the use of heterologous protein-based booster vaccines as an acceptable alternative to mRNA or adenoviral-based COVID-19 booster vaccines. This trial was conducted under ClinicalTrials.gov: NCT04889209.

7.
Infect Immun ; 91(5): e0007923, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37092998

RESUMEN

Neisseria meningitidis historically has been an infrequent and sporadic cause of urethritis and other urogenital infections. However, a nonencapsulated meningococcal clade belonging to the hyperinvasive clonal complex 11.2 lineage has recently emerged and caused clusters of urethritis cases in the United States and other countries. One of the genetic signatures of the emerging N. meningitidis urethritis clade (NmUC) is a chromosomal gene conversion event resulting in the acquisition of the Neisseria gonorrhoeae denitrification apparatus-the N. gonorrhoeae alleles encoding the nitrite reductase AniA, the nitric oxide (NO) reductase NorB, and the intergenic promoter region. The biological importance of the N. gonorrhoeae AniA-NorB for adaptation of the NmUC to a new environmental niche is investigated herein. We found that oxygen consumption, nitrite utilization, and NO production were significantly altered by the conversion event, resulting in different denitrifying aerobic and microaerobic growth of the clade. Further, transcription of aniA and norB in NmUC isolates differed from canonical N. meningitidis, and important polymorphisms within the intergenic region, which influenced aniA promoter activity of the NmUC, were identified. The contributions of three known meningococcal regulators (NsrR, FNR, and NarQP) in controlling the denitrification pathway and endogenous NO metabolism were distinct. Overall, transcription of aniA was dampened relative to canonical N. meningitidis, and this correlated with the lower NO accumulation in the clade. Denitrification and microaerobic respiration were bolstered, and protection against host-derived NO was likely enhanced. The acquisition of the N. gonorrhoeae denitrification pathway by the NmUC supports the clade's adaptation and survival in a microaerobic urogenital environment.


Asunto(s)
Gonorrea , Neisseria meningitidis , Uretritis , Estados Unidos , Humanos , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Óxido Nítrico/metabolismo , Respiración
8.
Microbiol Spectr ; : e0375922, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912669

RESUMEN

Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10-7. GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10-4 in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10-7). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10-4 in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance.

9.
Antimicrob Agents Chemother ; 67(3): e0131922, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36847556

RESUMEN

In Streptococcus pneumoniae (Spn), the 5.4 to 5.5 kb Macrolide Genetic Assembly (Mega) encodes an efflux pump (Mef[E]) and a ribosomal protection protein (Mel) conferring antibiotic resistance to commonly used macrolides in clinical isolates. We found the macrolide-inducible Mega operon provides heteroresistance (more than 8-fold range in MICs) to 14- and 15-membered ring macrolides. Heteroresistance is commonly missed during traditional clinical resistance screens but is highly concerning as resistant subpopulations can persist despite treatment. Spn strains containing the Mega element were screened via Etesting and population analysis profiling (PAP). All Mega-containing Spn strains screened displayed heteroresistance by PAP. The heteroresistance phenotype was linked to the mRNA expression of the mef(E)/mel operon of the Mega element. Macrolide induction uniformly increased Mega operon mRNA expression across the population, and heteroresistance was eliminated. A deletion of the 5' regulatory region of the Mega operon results in a mutant deficient in induction as well as in heteroresistance. The mef(E)L leader peptide sequence of the 5' regulatory region was required for induction and heteroresistance. Treatment with a noninducing 16-membered ring macrolide antibiotic did not induce the mef(E)/mel operon or eliminate the heteroresistance phenotype. Thus, inducibility of the Mega element by 14- and 15-membered macrolides and heteroresistance are linked in Spn. The stochastic variation in mef(E)/mel expression in a Spn population containing Mega provides the basis for heteroresistance.


Asunto(s)
Antibacterianos , Streptococcus pneumoniae , Antibacterianos/farmacología , Macrólidos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Ribosómicas , ARN Mensajero , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
10.
Open Forum Infect Dis ; 10(1): ofac661, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36655188

RESUMEN

The US Neisseria meningitidis urethritis clade (US_NmUC) harbors gonococcal deoxyribonucleic acid alleles and causes gonorrhea-like urogenital tract disease. A large convenience sample of US_NmUC isolates (N = 122) collected between January 2015 and December 2019 in Columbus, Ohio demonstrated uniform susceptibility to antibiotics recommended for gonorrhea treatment and meningococcal chemoprophylaxis.

11.
J Infect ; 85(6): 611-622, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273639

RESUMEN

This review summarizes the recent Global Meningococcal Initiative (GMI) regional meeting, which explored meningococcal disease in North America. Invasive meningococcal disease (IMD) cases are documented through both passive and active surveillance networks. IMD appears to be decreasing in many areas, such as the Dominican Republic (2016: 18 cases; 2021: 2 cases) and Panama (2008: 1 case/100,000; 2021: <0.1 cases/100,000); however, there is notable regional and temporal variation. Outbreaks persist in at-risk subpopulations, such as people experiencing homelessness in the US and migrants in Mexico. The recent emergence of ß-lactamase-positive and ciprofloxacin-resistant meningococci in the US is a major concern. While vaccination practices vary across North America, vaccine uptake remains relatively high. Monovalent and multivalent conjugate vaccines (which many countries in North America primarily use) can provide herd protection. However, there is no evidence that group B vaccines reduce meningococcal carriage. The coronavirus pandemic illustrates that following public health crises, enhanced surveillance of disease epidemiology and catch-up vaccine schedules is key. Whole genome sequencing is a key epidemiological tool for identifying IMD strain emergence and the evaluation of vaccine strain coverage. The Global Roadmap on Defeating Meningitis by 2030 remains a focus of the GMI.


Asunto(s)
Meningitis Meningocócica , Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis , Humanos , Incidencia , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis/genética , Vacunas Conjugadas , Meningitis Meningocócica/epidemiología
12.
medRxiv ; 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35898343

RESUMEN

Background: Protection from SARS-CoV-2 vaccines wanes over time and is compounded by emerging variants including Omicron subvariants. This study evaluated safety and immunogenicity of SARS-CoV-2 variant vaccines. Methods: This phase 2 open-label, randomized trial enrolled healthy adults previously vaccinated with a SARS-CoV-2 primary series and a single boost. Eligible participants were randomized to one of six Moderna COVID19 mRNA vaccine arms (50µg dose): Prototype (mRNA-1273), Omicron BA.1+Beta (1 or 2 doses), Omicron BA.1+Delta, Omicron BA.1 monovalent, and Omicron BA.1+Prototype. Neutralization antibody titers (ID 50 ) were assessed for D614G, Delta, Beta and Omicron BA.1 variants and Omicron BA.2.12.1 and BA.4/BA.5 subvariants 15 days after vaccination. Results: From March 30 to May 6, 2022, 597 participants were randomized and vaccinated. Median age was 53 years, and 20% had a prior SARS-CoV-2 infection. All vaccines were safe and well-tolerated. Day 15 geometric mean titers (GMT) against D614G were similar across arms and ages, and higher with prior infection. For uninfected participants, Day 15 Omicron BA.1 GMTs were similar across Omicron-containing vaccine arms (3724-4561) and higher than Prototype (1,997 [95%CI:1,482-2,692]). The Omicron BA.1 monovalent and Omicron BA.1+Prototype vaccines induced a geometric mean ratio (GMR) to Prototype for Omicron BA.1 of 2.03 (97.5%CI:1.37-3.00) and 1.56 (97.5%CI:1.06-2.31), respectively. A subset of samples from uninfected participants in four arms were also tested in a different laboratory at Day 15 for neutralizing antibody titers to D614G and Omicron subvariants BA.1, BA.2.12.2 and BA.4/BA.5. Omicron BA.4/BA.5 GMTs were approximately one third BA.1 GMTs (Prototype 517 [95%CI:324-826] vs. 1503 [95%CI:949-2381]; Omicron BA.1+Beta 628 [95%CI:367-1,074] vs. 2125 [95%CI:1139-3965]; Omicron BA.1+Delta 765 [95%CI:443-1,322] vs. 2242 [95%CI:1218-4128] and Omicron BA.1+Prototype 635 [95%CI:447-903] vs. 1972 [95%CI:1337-2907). Conclusions: Higher Omicron BA.1 titers were observed with Omicron-containing vaccines compared to Prototype vaccine and titers against Omicron BA.4/BA.5 were lower than against BA.1 for all candidate vaccines. Clinicaltrialsgov: NCT05289037.

13.
Cell Rep Med ; 3(7): 100679, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35798000

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits reduced susceptibility to vaccine-induced neutralizing antibodies, requiring a boost to generate protective immunity. We assess the magnitude and short-term durability of neutralizing antibodies after homologous and heterologous boosting with mRNA and Ad26.COV2.S vaccines. All prime-boost combinations substantially increase the neutralization titers to Omicron, although the boosted titers decline rapidly within 2 months from the peak response compared with boosted titers against the prototypic D614G variant. Boosted Omicron neutralization titers are substantially higher for homologous mRNA vaccine boosting, and for heterologous mRNA and Ad26.COV2.S vaccine boosting, compared with homologous Ad26.COV2.S boosting. Homologous mRNA vaccine boosting generates nearly equivalent neutralizing activity against Omicron sublineages BA.1, BA.2, and BA.3 but modestly reduced neutralizing activity against BA.2.12.1 and BA.4/BA.5 compared with BA.1. These results have implications for boosting requirements to protect against Omicron and future variants of SARS-CoV-2. This trial was conducted under ClincalTrials.gov: NCT04889209.


Asunto(s)
COVID-19 , Vacunas Virales , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
14.
Expert Rev Vaccines ; 21(6): 753-769, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35469524

RESUMEN

INTRODUCTION: The two currently licensed surface protein non-capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED: In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION: Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity, and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains, which are covered by the two licensed vaccines, is important in understanding protection from disease and public health use.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Neisseria meningitidis , Antígenos Bacterianos , Vacunas Bacterianas , Humanos , Proteínas de la Membrana , Infecciones Meningocócicas/prevención & control
15.
N Engl J Med ; 386(11): 1046-1057, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35081293

RESUMEN

BACKGROUND: Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients. METHODS: In this phase 1-2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 µg, Ad26.COV2.S (Johnson & Johnson-Janssen) at a dose of 5×1010 virus particles, or BNT162b2 (Pfizer-BioNTech) at a dose of 30 µg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29. RESULTS: Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients. CONCLUSIONS: Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Ad26COVS1/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Adulto , Anciano , Anciano de 80 o más Años , Vacunas contra la COVID-19/efectos adversos , Femenino , Humanos , Inmunización Secundaria/efectos adversos , Inyecciones Intramusculares/efectos adversos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología
16.
J Infect ; 84(3): 289-296, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838594

RESUMEN

This review article incorporates information from the 4th Global Meningococcal Initiative summit meeting. Since the introduction of stringent COVID-19 infection control and lockdown measures globally in 2020, there has been an impact on IMD prevalence, surveillance, and vaccination compliance. Incidence rates and associated mortality fell across various regions during 2020. A reduction in vaccine uptake during 2020 remains a concern globally. In addition, several Neisseria meningitidis clonal complexes, particularly CC4821 and CC11, continue to exhibit resistance to antibiotics, with resistance to ciprofloxacin or beta-lactams mainly linked to modifications of gyrA or penA alleles, respectively. Beta-lactamase acquisition was also reported through horizontal gene transfer (blaROB-1) involving other bacterial species. Despite the challenges over the past year, progress has also been made on meningococcal vaccine development, with several pentavalent (serogroups ABCWY and ACWYX) vaccines currently being studied in late-stage clinical trial programmes.


Asunto(s)
COVID-19 , Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Humanos , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/uso terapéutico , Neisseria meningitidis/genética , SARS-CoV-2 , Serogrupo
17.
Clin Infect Dis ; 74(12): 2159-2165, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34543381

RESUMEN

BACKGROUND: Cross-protective immunity between Neisseria meningitidis (Nm) and Neisseria gonorrhoeae (Ng) may inform gonococcal vaccine development. Meningococcal serogroup B (MenB) outer membrane vesicle (OMV) vaccines confer modest protection against gonorrhea. However, whether urethral Nm infection protects against gonorrhea is unknown. We examined gonorrhea risk among men with US Nm urethritis clade (US_NmUC) infections. METHODS: We conducted a retrospective cohort study of men with urethral US_NmUC (n = 128) between January 2015 and April 2018. Using diagnosis date as the baseline visit, we examined Ng status at return visits to compute urethral Ng risk. We compared these data to 3 referent populations: men with urethral Ng (n = 253), urethral chlamydia (Ct) (n = 251), and no urethral Ng or Ct (n = 255). We conducted sensitivity analyses to assess varied approaches to censoring, missing data, and anatomical site of infection. We also compared sequences of protein antigens in the OMV-based MenB-4C vaccine, US_NmUC, and Ng. RESULTS: Participants were primarily Black (65%) and heterosexual (82%). Over follow-up, 91 men acquired urethral Ng. Men with urethral US_NmUC had similar Ng risk to men with prior urethral Ng (adjusted hazard ratio [aHR]: 1.27; 95% CI: .65-2.48). Men with urethral US_NmUC had nonsignificantly increased Ng risk compared with men with urethral Ct (aHR: 1.51; 95% CI: .79-2.88), and significantly increased Ng risk compared with men without urethral Ng or Ct (aHR: 3.55; 95% CI: 1.27-9.91). Most of the protein antigens analyzed shared high sequence similarity. CONCLUSIONS: Urethral US_NmUC infection did not protect against gonorrhea despite substantial sequence similarities in shared protein antigens.


Asunto(s)
Gonorrea , Vacunas Meningococicas , Neisseria meningitidis , Uretritis , Humanos , Masculino , Neisseria gonorrhoeae , Estudios Retrospectivos , Uretritis/epidemiología
18.
medRxiv ; 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34671773

RESUMEN

Background: While Coronavirus disease 2019 (Covid-19) vaccines are highly effective, breakthrough infections are occurring. Booster vaccinations have recently received emergency use authorization (EUA) for certain populations but are restricted to homologous mRNA vaccines. We evaluated homologous and heterologous booster vaccination in persons who had received an EUA Covid-19 vaccine regimen. Methods: In this phase 1/2 open-label clinical trial conducted at ten U.S. sites, adults who received one of three EUA Covid-19 vaccines at least 12 weeks prior to enrollment and had no reported history of SARS-CoV-2 infection received a booster injection with one of three vaccines (Moderna mRNA-1273 100-µg, Janssen Ad26.COV2.S 5×1010 virus particles, or Pfizer-BioNTech BNT162b2 30-µg; nine combinations). The primary outcomes were safety, reactogenicity, and humoral immunogenicity on study days 15 and 29. Results: 458 individuals were enrolled: 154 received mRNA-1273, 150 received Ad26.CoV2.S, and 153 received BNT162b2 booster vaccines. Reactogenicity was similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. Booster vaccines increased the neutralizing activity against a D614G pseudovirus (4.2-76-fold) and binding antibody titers (4.6-56-fold) for all combinations; homologous boost increased neutralizing antibody titers 4.2-20-fold whereas heterologous boost increased titers 6.2-76-fold. Day 15 neutralizing and binding antibody titers varied by 28.7-fold and 20.9-fold, respectively, across the nine prime-boost combinations. Conclusion: Homologous and heterologous booster vaccinations were well-tolerated and immunogenic in adults who completed a primary Covid-19 vaccine regimen at least 12 weeks earlier.

19.
Cell Rep Med ; 2(7): 100354, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34250512

RESUMEN

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.


Asunto(s)
Anticuerpos Antivirales/sangre , Formación de Anticuerpos , COVID-19/inmunología , Memoria Inmunológica , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estudios Longitudinales , Masculino , Células B de Memoria , Células T de Memoria , Persona de Mediana Edad , Adulto Joven
20.
medRxiv ; 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-33948610

RESUMEN

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to eight months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA