Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Psychopathol Clin Sci ; 133(5): 347-357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38722592

RESUMEN

The internalizing construct captures shared variance underlying risk for mood and anxiety disorders. Internalizing factors based on diagnoses (or symptoms) of major depressive disorder (MDD) and generalized anxiety disorder (GAD) are well established. Studies have also integrated self-reported measures of associated traits (e.g., questionnaires assessing neuroticism, worry, and rumination) onto these factors, despite having not tested the assumption that these measures truly capture the same sets of risk factors. This study examined the overlap among both sets of measures using converging approaches. First, using genomic structural equation modeling, we constructed internalizing factors based on genome-wide association studies (GWASs) of internalizing diagnoses (e.g., MDD) and traits associated with internalizing (neuroticism, loneliness, and reverse-scored subjective well-being). Results indicated the two factors were highly (rg = .79) but not perfectly genetically correlated (rg < 1.0, p < .001). Second, we constructed similar latent factors in a combined twin/adoption sample of adults from the Colorado Adoption/Twin Study of Lifespan Behavioral Development and Cognitive Aging. Again, both factors demonstrated strong overlap at the level of genetic (rg = .76, 95% confidence interval [CI] [0.40, 0.97]) and nonshared environmental influences (re = .80, 95% CI [0.53, 1.0]). Shared environmental influences were estimated near zero for both factors. Our findings are consistent with current frameworks of psychopathology, though they suggest there are some unique genetic influences captured by internalizing diagnosis compared to trait measures, with potentially more nonadditive genetic influences on trait measures. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Trastornos de Ansiedad , Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Autoinforme , Humanos , Masculino , Adulto , Femenino , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/psicología , Trastornos de Ansiedad/epidemiología , Trastornos de Ansiedad/diagnóstico , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Persona de Mediana Edad , Neuroticismo , Gemelos/genética , Gemelos/psicología , Anciano
2.
Neuropsychopharmacology ; 47(5): 1000-1028, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34839363

RESUMEN

Cannabis use peaks in adolescence, and adolescents may be more vulnerable to the neural effects of cannabis and cannabis-related harms due to ongoing brain development during this period. In light of ongoing cannabis policy changes, increased availability, reduced perceptions of harm, heightened interest in medicinal applications of cannabis, and drastic increases in cannabis potency, it is essential to establish an understanding of cannabis effects on the developing adolescent brain. This systematic review aims to: (1) synthesize extant literature on functional and structural neural alterations associated with cannabis use during adolescence and emerging adulthood; (2) identify gaps in the literature that critically impede our ability to accurately assess the effect of cannabis on adolescent brain function and development; and (3) provide recommendations for future research to bridge these gaps and elucidate the mechanisms underlying cannabis-related harms in adolescence and emerging adulthood, with the long-term goal of facilitating the development of improved prevention, early intervention, and treatment approaches targeting adolescent cannabis users (CU). Based on a systematic search of Medline and PsycInfo and other non-systematic sources, we identified 90 studies including 9441 adolescents and emerging adults (n = 3924 CU, n = 5517 non-CU), which provide preliminary evidence for functional and structural alterations in frontoparietal, frontolimbic, frontostriatal, and cerebellar regions among adolescent cannabis users. Larger, more rigorous studies are essential to reconcile divergent results, assess potential moderators of cannabis effects on the developing brain, disentangle risk factors for use from consequences of exposure, and elucidate the extent to which cannabis effects are reversible with abstinence. Guidelines for conducting this work are provided.


Asunto(s)
Conducta del Adolescente , Cannabis , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Cannabis/efectos adversos , Neuroimagen Funcional , Humanos
3.
Front Psychiatry ; 12: 703398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408681

RESUMEN

Electroencephalography (EEG) measures the brain's electrical activity with high temporal resolution. In comparison to neuroimaging modalities such as MRI or PET, EEG is relatively cheap, non-invasive, portable, and simple to administer, making it an attractive tool for clinical deployment. Despite this, studies utilizing EEG to investigate obsessive-compulsive disorder (OCD) are relatively sparse. This contrasts with a robust literature using other brain imaging methodologies. The present review examines studies that have used EEG to examine predictors and correlates of response in OCD and draws tentative conclusions that may guide much needed future work. Key findings include a limited literature base; few studies have attempted to predict clinical change from EEG signals, and they are confounded by the effects of both pharmacotherapy and psychotherapy. The most robust literature, consisting of several studies, has examined event-related potentials, including the P300, which several studies have reported to be abnormal at baseline in OCD and to normalize with treatment; but even here the literature is quite heterogeneous, and more work is needed. With more robust research, we suggest that the relatively low cost and convenience of EEG, especially in comparison to fMRI and PET, make it well-suited to the development of feasible personalized treatment algorithms.

4.
J Physiol ; 599(16): 3955-3971, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34229359

RESUMEN

KEY POINTS: The corticoreticulospinal tract (CReST) is a descending motor pathway that reorganizes after corticospinal tract (CST) injury in animals. In humans, the pattern of CReST innervation to upper limb muscles has not been carefully examined in healthy individuals or individuals with CST injury. In the present study, we assessed CReST projections to an arm and hand muscle on the same side of the body in healthy and chronic stoke subjects using transcranial magnetic stimulation. We show that CReST connection strength to the muscles differs between healthy and stroke subjects, with stronger connections to the hand than arm in healthy subjects, and stronger connections to the arm than hand in stroke subjects. These results help us better understand CReST innervation patterns in the upper limb, and may point to its role in normal motor function and motor recovery in humans. ABSTRACT: The corticoreticulospinal tract (CReST) is a major descending motor pathway in many animals, but little is known about its innervation patterns in proximal and distal upper extremity muscles in humans. The contralesional CReST furthermore reorganizes after corticospinal tract (CST) injury in animals, but it is less clear whether CReST innervation changes after stroke in humans. We thus examined CReST functional connectivity, connection strength, and modulation in an arm and hand muscle of healthy (n = 15) and chronic stroke (n = 16) subjects. We delivered transcranial magnetic stimulation to the contralesional hemisphere (assigned in healthy subjects) to elicit ipsilateral motor evoked potentials (iMEPs) from the paretic biceps (BIC) and first dorsal interosseous (FDI) muscle. We operationalized CReST functional connectivity as iMEP presence/absence, CReST projection strength as iMEP size and CReST modulation as change in iMEP size by head rotation. We found comparable CReST functional connectivity to the BICs and FDIs in both subject groups. However, the pattern of CReST connection strength to the muscles diverged between groups, with stronger connections to FDIs than BICs in healthy subjects and stronger connections to BICs than FDIs in stroke subjects. Head rotation modulated only FDI iMEPs of healthy subjects. Our findings indicate that the healthy CReST does not have a proximal innervation bias, and its strong FDI connections may have functional relevance to finger individuation. The reversed CReST innervation pattern in stroke subjects confirms its reorganization after CST injury, and its strong BIC connections may indicate upregulation for particular upper extremity muscles or their functional actions.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Brazo , Potenciales Evocados Motores , Mano , Humanos , Músculo Esquelético , Estimulación Magnética Transcraneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA