Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(13): 7487-7503, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38908028

RESUMEN

Filamentous Actinobacteria, recently renamed Actinomycetia, are the most prolific source of microbial bioactive natural products. Studies on biosynthetic gene clusters benefit from or require chromosome-level assemblies. Here, we provide DNA sequences from >1000 isolates: 881 complete genomes and 153 near-complete genomes, representing 28 genera and 389 species, including 244 likely novel species. All genomes are from filamentous isolates of the class Actinomycetia from the NBC culture collection. The largest genus is Streptomyces with 886 genomes including 742 complete assemblies. We use this data to show that analysis of complete genomes can bring biological understanding not previously derived from more fragmented sequences or less systematic datasets. We document the central and structured location of core genes and distal location of specialized metabolite biosynthetic gene clusters and duplicate core genes on the linear Streptomyces chromosome, and analyze the content and length of the terminal inverted repeats which are characteristic for Streptomyces. We then analyze the diversity of trans-AT polyketide synthase biosynthetic gene clusters, which encodes the machinery of a biotechnologically highly interesting compound class. These insights have both ecological and biotechnological implications in understanding the importance of high quality genomic resources and the complex role synteny plays in Actinomycetia biology.


Asunto(s)
Actinobacteria , Genoma Bacteriano , Familia de Multigenes , Sintasas Poliquetidas , Genoma Bacteriano/genética , Actinobacteria/genética , Actinobacteria/clasificación , Actinobacteria/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Streptomyces/genética , Streptomyces/clasificación , Streptomyces/metabolismo , Filogenia , Genómica/métodos
2.
ACS Chem Biol ; 19(3): 641-653, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340355

RESUMEN

Azoxy compounds are a distinctive group of bioactive secondary metabolites characterized by a unique RN═N+(O-)R moiety. The azoxy moiety is present in various classes of metabolites that exhibit various biological activities. The enzymatic mechanisms underlying azoxy bond formation remain enigmatic. Azodyrecins are cytotoxic azoxy metabolites produced by Streptomyces mirabilis P8-A2. Here, we cloned and confirmed the putative azd biosynthetic gene cluster through CATCH cloning followed by expression and production of azodyrecins in two heterologous hosts, S. albidoflavus J1074 and S. coelicolor M1146, respectively. We explored the function of 14 enzymes in azodyrecin biosynthesis through gene knockout using CRISPR-Cas9 base editing in the native producer, S. mirabilis P8-A2. The key intermediates were analyzed in the mutants through MS/MS fragmentation studies, revealing azoxy bond formation via the conversion of hydrazine to an azo compound followed by further oxygenation. Enzymes involved in modifications of the precursor could be postulated based on their predicted function and the intermediates identified in the knockout strains. Moreover, the distribution of the azoxy biosynthetic gene clusters across Streptomyces spp. genomes is explored, highlighting the presence of these clusters in over 20% of the Streptomyces spp. genomes and revealing that azoxymycin and valanimycin are scarce, while azodyrecin and KA57A-like clusters are widely distributed across the phylogenetic tree.


Asunto(s)
Streptomyces , Espectrometría de Masas en Tándem , Filogenia , Streptomyces/genética , Streptomyces/metabolismo , Familia de Multigenes
3.
Microbiol Resour Announc ; 12(7): e0011523, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338367

RESUMEN

Here, we report the complete genome sequences of Methylorubrum extorquens NBC_00036 and Methylorubrum extorquens NBC_00404. The genomes were sequenced using the Oxford Nanopore Technologies MinION and Illumina NovaSeq systems. Both genomes are circular, with sizes of 5,661,342 bp and 5,869,086 bp, respectively.

4.
Microbiol Resour Announc ; 11(8): e0022022, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35894627

RESUMEN

The actinomycete Streptomyces sp. strain Gö40/10 has the potential to produce a range of secondary metabolites, one of which is collinolactone, a compound with neuroprotective properties and potential for pharmaceutical applications. The genome was sequenced with Oxford Nanopore Technologies MinION and Illumina MiSeq systems and consists of a single 9,635,564-nucleotide linear chromosome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA