Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Cell Dev Biol ; 11: 1240558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900275

RESUMEN

Normal function of the C-terminal Eps15 homology domain-containing protein 1 (EHD1) has previously been associated with endocytic vesicle trafficking, shaping of intracellular membranes, and ciliogenesis. We recently identified an autosomal recessive missense mutation c.1192C>T (p.R398W) of EHD1 in patients who had low molecular weight proteinuria (0.7-2.1 g/d) and high-frequency hearing loss. It was already known from Ehd1 knockout mice that inactivation of Ehd1 can lead to male infertility. However, the exact role of the EHD1 protein and its p.R398W mutant during spermatogenesis remained still unclear. Here, we report the testicular phenotype of a knockin mouse model carrying the p.R398W mutation in the EHD1 protein. Male homozygous knockin mice were infertile, whereas the mutation had no effect on female fertility. Testes and epididymes were significantly reduced in size and weight. The testicular epithelium appeared profoundly damaged and had a disorganized architecture. The composition of developing cell types was altered. Malformed acrosomes covered underdeveloped and misshaped sperm heads. In the sperm tail, midpieces were largely missing indicating disturbed assembly of the sperm tail. Defective structures, i.e., nuclei, acrosomes, and sperm tail midpieces, were observed in large vacuoles scattered throughout the epithelium. Interestingly, cilia formation itself did not appear to be affected, as the axoneme and other parts of the sperm tails except the midpieces appeared to be intact. In wildtype mice, EHD1 co-localized with acrosomal granules on round spermatids, suggesting a role of the EHD1 protein during acrosomal development. Wildtype EHD1 also co-localized with the VPS35 component of the retromer complex, whereas the p.R398W mutant did not. The testicular pathologies appeared very early during the first spermatogenic wave in young mice (starting at 14 dpp) and tubular destruction worsened with age. Taken together, EHD1 plays an important and probably multifaceted role in spermatogenesis in mice. Therefore, EHD1 may also be a hitherto underestimated infertility gene in humans.

2.
J Am Soc Nephrol ; 33(4): 732-745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149593

RESUMEN

BACKGROUND: The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis. However, the relevance of EHD1 in human tissues, in particular in the kidney, was unknown. METHODS: Genetic techniques were used in patients with tubular proteinuria and deafness to identify the disease-causing gene. Diagnostic and functional studies were performed in patients and disease models to investigate the pathophysiology. RESULTS: We identified six individuals (5-33 years) with proteinuria and a high-frequency hearing deficit associated with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7-2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Interestingly, ciliogenesis appeared unaffected in patients and mouse models. In silico structural analysis predicted a destabilizing effect of the R398W variant and possible inference with nucleotide binding leading to impaired EHD1 oligomerization and membrane remodeling ability. CONCLUSIONS: A homozygous missense variant of EHD1 causes a previously unrecognized autosomal recessive disorder characterized by sensorineural deafness and tubular proteinuria. Recessive EHD1 variants should be considered in individuals with hearing impairment, especially if tubular proteinuria is noted.


Asunto(s)
Sordera , Pez Cebra , Adolescente , Adulto , Animales , Niño , Preescolar , Sordera/genética , Endocitosis , Humanos , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mutación , Proteinuria/metabolismo , Proteínas de Transporte Vesicular/genética , Adulto Joven , Pez Cebra/metabolismo
3.
PLoS One ; 14(9): e0222593, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31536548

RESUMEN

INTRODUCTION: Integrated service delivery is considered to be an essential condition for improving the management and health outcomes of people with chronic kidney disease (CKD). However, research on the assessment of integrated care by patients and care providers is hindered by the absence of brief, reliable, and valid measurement tools. OBJECTIVE: The aim of this study was to develop survey instruments for healthcare professionals and patients based on the Rainbow Model of Integrated Care (RMIC), and to evaluate their psychometric properties. DESIGN: The development process was based on the US Food and Drug Administration guidelines. This included item generation from systematic reviews of existing tools and expert opinion on clarity and content validity, involving renal care providers and chronic kidney patients. A cross-sectional, multi-centre design was used to test for internal consistency and construct validity. SETTING: Outpatient clinics in a large renal network. PARTICIPANTS: A sample of 30.788 CKD patients, and 8.914 renal care providers. METHODS AND ANALYSIS: Both survey instruments were developed using previous qualitative work and published literature. A multidisciplinary expert panel assessed the face and content validity of both instruments and following a pilot study, the psychometric properties of both instruments were explored. Exploratory factor analysis with principal axis factoring and with promax rotation was used to assess the underlying dimensions of both instruments; Cronbach's alpha was used to determine the internal constancy reliability. RESULTS: 17.512 patients (response rate: 56.9%) and 8.849 care providers (response rate: 69.5%) responded to the questionnaires. Factor analysis of the patient questionnaire yielded three internally consistent (Cronbach's alpha > 0.7) factors: person-centeredness, clinical coordination, and professional coordination. Factor analysis of the provider questionnaire produced eight internally consistent (Cronbach's alpha > 0.7) factors: person-centeredness, community centeredness, clinical coordination, professional coordination, organisational coordination, system coordination, technical and cultural competence. As hypothesised, care coordination patient and providers scores significantly correlated with questions about quality of care, treatment involvement, reported health, clinics' organisational readiness, and external care coordination capacity. CONCLUSION: This study provides evidence for the reliability and validity of the RMIC patient and provider questionnaires as generic tools to assess the experience with or perception of integrated renal care delivery. The instruments are recommended in future applications testing test-retest reliability, convergent and predictive validity, and responsiveness.


Asunto(s)
Prestación Integrada de Atención de Salud/métodos , Prestación Integrada de Atención de Salud/estadística & datos numéricos , Personal de Salud/estadística & datos numéricos , Riñón/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Instituciones de Atención Ambulatoria/estadística & datos numéricos , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Psicometría/estadística & datos numéricos , Insuficiencia Renal Crónica/fisiopatología , Reproducibilidad de los Resultados , Encuestas y Cuestionarios/estadística & datos numéricos , Adulto Joven
4.
J Am Soc Nephrol ; 29(7): 1849-1858, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29654216

RESUMEN

Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.


Asunto(s)
Amidinotransferasas/genética , Síndrome de Fanconi/genética , Fallo Renal Crónico/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Anciano , Amidinotransferasas/metabolismo , Animales , Simulación por Computador , Síndrome de Fanconi/complicaciones , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patología , Femenino , Heterocigoto , Humanos , Lactante , Inflamasomas/metabolismo , Fallo Renal Crónico/etiología , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Masculino , Ratones , Ratones Noqueados , Conformación Molecular , Mutación , Mutación Missense , Linaje , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ADN , Adulto Joven
5.
Clin J Am Soc Nephrol ; 13(3): 375-386, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29438975

RESUMEN

BACKGROUND AND OBJECTIVES: The effectiveness of person-centered integrated care strategies for CKD is uncertain. We conducted a systematic review and meta-analysis of randomized, controlled trials to assess the effect of person-centered integrated care for CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We searched MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (from inception to April of 2016), and selected randomized, controlled trials of person-centered integrated care interventions with a minimum follow-up of 3 months. Random-effects meta-analysis was used to assess the effect of person-centered integrated care. RESULTS: We included 14 eligible studies covering 4693 participants with a mean follow-up of 12 months. In moderate quality evidence, person-centered integrated care probably had no effect on all-cause mortality (relative risk [RR], 0.86; 95% confidence interval [95% CI], 0.68 to 1.08) or health-related quality of life (standardized mean difference, 0.02; 95% CI, -0.05 to 0.10). The effects on renal replacement therapy (RRT) (RR, 1.00; 95% CI, 0.65 to 1.55), serum creatinine levels (mean difference, 0.59 mg/dl; 95% CI, -0.38 to 0.36), and eGFR (mean difference, 1.51 ml/min per 1.73 m2; 95% CI, -3.25 to 6.27) were very uncertain. Quantitative analysis suggested that person-centered integrated care interventions may reduce all-cause hospitalization (RR, 0.38; 95% CI, 0.15 to 0.95) and improve BP control (RR, 1.20; 95% CI, 1.00 to 1.44), although the certainty of the evidence was very low. CONCLUSIONS: Person-centered integrated care may have little effect on mortality or quality of life. The effects on serum creatinine, eGFR, and RRT are uncertain, although person-centered integrated care may lead to fewer hospitalizations and improved BP control.


Asunto(s)
Prestación Integrada de Atención de Salud , Atención Dirigida al Paciente , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/terapia , Presión Sanguínea , Enfermedades Cardiovasculares/mortalidad , Creatinina/sangre , Hospitalización , Humanos , Mortalidad , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Terapia de Reemplazo Renal
6.
Respir Physiol Neurobiol ; 245: 13-28, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27838333

RESUMEN

TASK-1 potassium channels have been implicated in central and peripheral chemoreception; however, the precise contribution of TASK-1 for the control of respiration is still under debate. Here, we investigated the respiration of unrestrained adult and neonatal TASK-1 knockout mice (TASK-1-/-) using a plethysmographic device. Respiration in adult female TASK-1-/- mice under control (21% O2), hypoxia and hypercapnia was unaffected. Under acute hypoxia male TASK-1-/- mice exhibited a reduced increase of the respiratory frequency (fR) compared to wildtypes. However, the tidal volume (VT) of male TASK-1-/- mice was strongly enhanced. The volatile anesthetic isoflurane induced in male TASK-1-/- and male wild type mice (TASK-1+/+) a similar respiratory depression. Neonatal TASK-1-/- mice demonstrated a 30-40% decrease of the minute volume, caused by a reduction of the fR under control condition (21% O2). Under hypoxia, neonatal TASK-1-/- mice more frequently stopped breathing (apnea>3s) suggesting an increased hypoxia-sensitivity. As reported before, this increased hypoxia sensitivity had no influence on the survival rate of neonatal TASK-1-/- mice. In adult and neonatal mice, TASK-1 gene deletion induced a significant prolongation of the relaxation time (RT), which is a parameter for expiration kinetics. Additionally, screening for mutations in the human TASK-1 gene in 155 cases of sudden infant death syndrome (SIDS) was inconclusive. In conclusion, these data are suggestive for an increased hypoxia-sensitivity of neonatal TASK-1-/- mice, however, without causing an increase in neonatal lethality. In adult female TASK-1-/- mice respiration was unaffected, whereas adult male TASK-1-/- mice showed a modified breathing pattern. These results are suggestive for sex-specific mechanisms for compensating the inactivation of TASK-1 in mice.


Asunto(s)
Proteínas del Tejido Nervioso/deficiencia , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Respiración , Caracteres Sexuales , Envejecimiento/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Animales Recién Nacidos , Estudios de Cohortes , Femenino , Humanos , Hipercapnia/fisiopatología , Lactante , Isoflurano/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Pletismografía Total , Canales de Potasio de Dominio Poro en Tándem/genética , Respiración/efectos de los fármacos , Muerte Súbita del Lactante/genética , Volumen de Ventilación Pulmonar/fisiología
7.
Hypertension ; 63(5): 1102-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24591336

RESUMEN

Elucidation of the molecular mechanisms leading to autonomous aldosterone secretion is a prerequisite to define potential targets and biomarkers in the context of primary aldosteronism. After a genome-wide association study with subjects from the population-based Cooperative Health Research in the Region of Augsburg F4 survey, we observed a highly significant association (P=6.78×10(-11)) between the aldosterone to renin ratio and a locus at 5q32. Hypothesizing that this locus may contain genes of relevance for the pathogenesis of primary aldosteronism, we investigated solute carrier family 26 member 2 (SLC26A2), a protein with known transport activity for sulfate and other cations. Within murine tissues, adrenal glands showed the highest expression levels for SLC26A2, which was significantly downregulated on in vivo stimulation with angiotensin II and potassium. SLC26A2 expression was found to be significantly lower in aldosterone-producing adenomas in comparison with normal adrenal glands. In adrenocortical NCI-H295R cells, specific knockdown of SLC26A2 resulted in a highly significant increase in aldosterone secretion. Concomitantly, expression of steroidogenic enzymes, as well as upstream effectors including transcription factors such as NR4A1, CAMK1, and intracellular Ca(2+) content, was upregulated in knockdown cells. To substantiate further these findings in an SLC26A2 mutant mouse model, aldosterone output proved to be increased in a sex-specific manner. In summary, these findings point toward a possible effect of SLC26A2 in the regulation of aldosterone secretion potentially involved in the pathogenesis of primary aldosteronism.


Asunto(s)
Corteza Suprarrenal/metabolismo , Aldosterona/metabolismo , Proteínas de Transporte de Anión/metabolismo , Sistema Renina-Angiotensina/fisiología , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/patología , Adulto , Anciano , Angiotensina II/farmacología , Animales , Proteínas de Transporte de Anión/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Hiperaldosteronismo/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Mutantes , Persona de Mediana Edad , Modelos Animales , Potasio/farmacología , Sistema Renina-Angiotensina/genética , Transportadores de Sulfato
8.
N Engl J Med ; 370(2): 129-38, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24401050

RESUMEN

BACKGROUND: In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS: We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS: We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS: Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).


Asunto(s)
Síndrome de Fanconi/genética , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Mutación Missense , Enzima Bifuncional Peroxisomal/genética , Secuencia de Aminoácidos , Animales , Población Negra , Cromosomas Humanos Par 3 , Modelos Animales de Enfermedad , Síndrome de Fanconi/etnología , Femenino , Ligamiento Genético , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Linaje , Enzima Bifuncional Peroxisomal/química , Enzima Bifuncional Peroxisomal/metabolismo , Fenotipo , Análisis de Secuencia de ADN
9.
Nephron Physiol ; 124(3-4): 7-13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24296675

RESUMEN

Genetically modified mice represent important models for elucidating renal pathophysiology, but gene deletions frequently cause severe failure to thrive. In such cases, the analysis of the phenotype is often limited to the first weeks of life when renal excretory function undergoes dramatic physiological changes. Here, we investigated the postnatal dynamics of urinary ion excretion in mice. The profiles of urinary electrolyte excretion of mice were examined from birth until after weaning using an automated ion chromatography system. Postnatally, mice grew about 0.4 g/day, except during two phases with slower weight gain: (i) directly after birth during adaptation to extrauterine conditions (P0-P2) and (ii) during the weaning period (P15-P21), when nutrition changed from mother's milk to solid chow and water. During the first 3 days after birth, remarkable changes in urinary Na(+), Ca(2+), Mg(2+), and phosphate concentrations occurred, whereas K(+) and Cl(-) concentrations hardly changed. From days 4-14 after birth, Na(+), Ca(2+), Mg(2+), K(+), and Cl(-) concentrations remained relatively stable at low levels. Urinary concentrations of creatinine, NH4(+), phosphate, and sulfate constantly increased from birth until after weaning. Profiles of salt excretion in KCNJ10(-/-) mice exemplified the relevance of age-dependent analysis of urinary excretion. In conclusion, the most critical phases for analysis of renal ion excretion during the first weeks of life are directly after birth and during the weaning period. The age dependence of urinary excretion varies for the different ions. This should be taken into consideration when the renal phenotype of mice is investigated during the first weeks of life.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Creatinina/orina , Iones/orina , Riñón/fisiología , Factores de Edad , Animales , Cromatografía por Intercambio Iónico , Masculino , Ratones , Ratones Endogámicos C57BL , Destete
10.
J Clin Endocrinol Metab ; 98(11): E1861-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24037882

RESUMEN

CONTEXT: Primary aldosteronism is a heterogeneous group of disorders comprising both sporadic and familial forms. Mutations in the KCNJ5 gene, which encodes the inward rectifier K(+) channel 4 (G protein-activated inward rectifier K(+) channel 4, Kir3.4), cause familial hyperaldosteronism type III (FH-III) and are involved in the pathogenesis of sporadic aldosterone-producing adenomas. OBJECTIVE: The objective of the study was to characterize the effects of a newly described KCNJ5 mutation in vitro. PATIENTS AND METHODS: The index case is a 62-year-old woman affected by primary aldosteronism, who underwent left adrenalectomy after workup for adrenal adenoma. Exon 1 of KCNJ5 was PCR amplified from adrenal tissue and peripheral blood and sequenced. Electrophysiological and gene expression studies were performed to establish the functional effects of the new mutation on the membrane potential and adrenal cell CYP11B2 expression. RESULTS: KCNJ5 sequencing in the index case revealed a new p.Y152C germline mutation; interestingly, the phenotype of the patient was milder than most of the previously described FH-III families. The tyrosine-to-cysteine substitution resulted in pathological Na(+) permeability, cell membrane depolarization, and disturbed intracellular Ca(2+) homeostasis, effects similar, albeit smaller, to the ones demonstrated for other KCNJ5 mutations. Gene expression studies revealed an increased expression of CYP11B2 and its transcriptional regulator NR4A2 in HAC15 adrenal cells overexpressing KCNJ5(Y152C) compared to the wild-type channel. The effect was clearly Ca(2+)-dependent, because it was abolished by the calcium channel blocker nifedipine. CONCLUSIONS: Herein we describe a new germline mutation in KCNJ5 responsible for FH-III.


Asunto(s)
Adenoma/genética , Neoplasias de las Glándulas Suprarrenales/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Adenoma/patología , Adenoma/cirugía , Neoplasias de las Glándulas Suprarrenales/patología , Neoplasias de las Glándulas Suprarrenales/cirugía , Adrenalectomía , Calcio/metabolismo , Citocromo P-450 CYP11B2/genética , Salud de la Familia , Femenino , Células HEK293 , Humanos , Hiperaldosteronismo/genética , Hiperaldosteronismo/patología , Hiperaldosteronismo/cirugía , Persona de Mediana Edad , Mutación Puntual
11.
Endocrinology ; 154(8): 2712-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23698720

RESUMEN

Task3 K(+) channels are highly expressed in the adrenal cortex and contribute to the angiotensin II and K(+) sensitivity of aldosterone-producing glomerulosa cells. Adult Task3(-/-) mice display a partially autonomous aldosterone secretion, subclinical hyperaldosteronism, and salt-sensitive hypertension. Here, we investigated the age dependence of the adrenal phenotype of Task3(-/-) mice. Compared with adults, newborn Task3(-/-) mice displayed a severe adrenal phenotype with strongly increased plasma levels of aldosterone, corticosterone, and progesterone. This adrenocortical dysfunction was accompanied by a modified gene expression profile. The most strongly up-regulated gene was the protease renin. Real-time PCR corroborated the strong increase in adrenal renin expression, and immunofluorescence revealed renin-expressing cells in the zona fasciculata. Together with additional factors, activation of the local adrenal renin system is probably causative for the severely disturbed steroid hormone secretion of neonatal Task3(-/-) mice. The changes in gene expression patterns of neonatal Task3(-/-) mice could also be relevant for other forms of hyperaldosteronism.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Hiperaldosteronismo/genética , Canales de Potasio/genética , Sistema Renina-Angiotensina/genética , Aldosterona/sangre , Aldosterona/metabolismo , Animales , Animales Recién Nacidos , Corticosterona/sangre , Corticosterona/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Hiperaldosteronismo/sangre , Hiperaldosteronismo/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Canales de Potasio/deficiencia , Progesterona/sangre , Progesterona/metabolismo , Renina/sangre , Renina/genética , Renina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Zona Fascicular/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(32): 14490-5, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20651251

RESUMEN

Mutations of the KCNJ10 (Kir4.1) K(+) channel underlie autosomal recessive epilepsy, ataxia, sensorineural deafness, and (a salt-wasting) renal tubulopathy (EAST) syndrome. We investigated the localization of KCNJ10 and the homologous KCNJ16 in kidney and the functional consequences of KCNJ10 mutations found in our patients with EAST syndrome. Kcnj10 and Kcnj16 were found in the basolateral membrane of mouse distal convoluted tubules, connecting tubules, and cortical collecting ducts. In the human kidney, KCNJ10 staining was additionally observed in the basolateral membrane of the cortical thick ascending limb of Henle's loop. EM of distal tubular cells of a patient with EAST syndrome showed reduced basal infoldings in this nephron segment, which likely reflects the morphological consequences of the impaired salt reabsorption capacity. When expressed in CHO and HEK293 cells, the KCNJ10 mutations R65P, G77R, and R175Q caused a marked impairment of channel function. R199X showed complete loss of function. Single-channel analysis revealed a strongly reduced mean open time. Qualitatively similar results were obtained with coexpression of KCNJ10/KCNJ16, suggesting a dominance of KCNJ10 function in native renal KCNJ10/KCNJ16 heteromers. The decrease in the current of R65P and R175Q was mainly caused by a remarkable shift of pH sensitivity to the alkaline range. In summary, EAST mutations of KCNJ10 lead to impaired channel function and structural changes in distal convoluted tubules. Intriguingly, the metabolic alkalosis present in patients carrying the R65P mutation possibly improves residual function of KCNJ10, which shows higher activity at alkaline pH.


Asunto(s)
Anomalías Múltiples/genética , Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Animales , Ataxia , Línea Celular , Epilepsia , Pérdida Auditiva Sensorineural , Humanos , Enfermedades Renales , Túbulos Renales Distales/patología , Ratones , Ratones Endogámicos C57BL , Canales de Potasio de Rectificación Interna/análisis , Síndrome , Transfección
13.
Proc Natl Acad Sci U S A ; 107(5): 2325-30, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133877

RESUMEN

Task2 K(+) channel expression in the central nervous system is surprisingly restricted to a few brainstem nuclei, including the retrotrapezoid (RTN) region. All Task2-positive RTN neurons were lost in mice bearing a Phox2b mutation that causes the human congenital central hypoventilation syndrome. In plethysmography, Task2(-/-) mice showed disturbed chemosensory function with hypersensitivity to low CO(2) concentrations, leading to hyperventilation. Task2 probably is needed to stabilize the membrane potential of chemoreceptive cells. In addition, Task2(-/-) mice lost the long-term hypoxia-induced respiratory decrease whereas the acute carotid-body-mediated increase was maintained. The lack of anoxia-induced respiratory depression in the isolated brainstem-spinal cord preparation suggested a central origin of the phenotype. Task2 activation by reactive oxygen species generated during hypoxia could silence RTN neurons, thus contributing to respiratory depression. These data identify Task2 as a determinant of central O(2) chemoreception and demonstrate that this phenomenon is due to the activity of a small number of neurons located at the ventral medullary surface.


Asunto(s)
Dióxido de Carbono/fisiología , Oxígeno/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Centro Respiratorio/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/patología , Tronco Encefálico/fisiología , Tronco Encefálico/fisiopatología , Células Quimiorreceptoras/patología , Células Quimiorreceptoras/fisiología , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Pletismografía Total , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/genética , Embarazo , Fenómenos Fisiológicos Respiratorios , Apnea Central del Sueño/etiología , Apnea Central del Sueño/genética , Apnea Central del Sueño/fisiopatología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
N Engl J Med ; 360(19): 1960-70, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19420365

RESUMEN

BACKGROUND: Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS: Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS: Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS: Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.


Asunto(s)
Ataxia/genética , Epilepsia/genética , Pérdida Auditiva Sensorineural/genética , Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Secuencia de Aminoácidos , Animales , Preescolar , Cromosomas Humanos Par 1 , Femenino , Genes Recesivos , Humanos , Escala de Lod , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Linaje , Fenotipo , Potasio/metabolismo , Análisis de Secuencia de ADN , Sodio/metabolismo , Síndrome
15.
EMBO J ; 27(1): 179-87, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18034154

RESUMEN

TASK1 (KCNK3) and TASK3 (KCNK9) are two-pore domain potassium channels highly expressed in adrenal glands. TASK1/TASK3 heterodimers are believed to contribute to the background conductance whose inhibition by angiotensin II stimulates aldosterone secretion. We used task1-/- mice to analyze the role of this channel in adrenal gland function. Task1-/- exhibited severe hyperaldosteronism independent of salt intake, hypokalemia, and arterial 'low-renin' hypertension. The hyperaldosteronism was fully remediable by glucocorticoids. The aldosterone phenotype was caused by an adrenocortical zonation defect. Aldosterone synthase was absent in the outer cortex normally corresponding to the zona glomerulosa, but abundant in the reticulo-fasciculata zone. The impaired mineralocorticoid homeostasis and zonation were independent of the sex in young mice, but were restricted to females in adults. Patch-clamp experiments on adrenal cells suggest that task3 and other K+ channels compensate for the task1 absence. Adrenal zonation appears as a dynamic process that even can take place in adulthood. The striking changes in the adrenocortical architecture in task1-/- mice are the first demonstration of the causative role of a potassium channel in development/differentiation.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Homeostasis/genética , Mineralocorticoides/antagonistas & inhibidores , Mineralocorticoides/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/genética , Glándulas Suprarrenales/patología , Aldosterona/sangre , Aldosterona/metabolismo , Animales , Femenino , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Potasio/sangre , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Renina/sangre
16.
Cell Physiol Biochem ; 19(1-4): 21-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17310097

RESUMEN

BACKGROUND/AIMS: Heteromeric KCNEx/KCNQ1 (=KvLQT1, Kv7.1) K(+) channels are important for repolarization of cardiac myocytes, endolymph secretion in the inner ear, gastric acid secretion, and transport across epithelia. They are modulated by pH in a complex way: homomeric KCNQ1 is inhibited by external acidification (low pH(e)); KCNE2/KCNQ1 is activated; and for KCNE1/KCNQ1, variable effects have been reported. METHODS: The role of KCNE subunits for the effect of pH(e) on KCNQ1 was analyzed in transfected COS cells and cardiac myocytes by the patch-clamp technique. RESULTS: In outside-out patches of transfected cells, hKCNE2/hKCNQ1 current was increased by acidification down to pH 4.5. Chimeras with the acid-insensitive hKCNE3 revealed that the extracellular N-terminus and at least part of the transmembrane domain of hKCNE2 are needed for activation by low pH(e). hKCNE1/hKCNQ1 heteromeric channels exhibited marked changes of biophysical properties at low pH(e): The slowly activating hKCNE1/hKCNQ1 channels were converted into constitutively open, non-deactivating channels. Experiments on guinea pig and mouse cardiac myocytes pointed to an important role of KCNQ1 during acidosis implicating a significant contribution to cardiac repolarization under acidic conditions. CONCLUSION: External pH can modify current amplitude and biophysical properties of KCNQ1. KCNE subunits work as molecular switches by modulating the pH sensitivity of human KCNQ1.


Asunto(s)
Canal de Potasio KCNQ1/química , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/química , Ácidos/farmacología , Animales , Conductividad Eléctrica , Cobayas , Humanos , Concentración de Iones de Hidrógeno , Canal de Potasio KCNQ1/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología , Estructura Terciaria de Proteína , Ratas
17.
Mech Dev ; 117(1-2): 357-61, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12204285

RESUMEN

RFamides constitute a large family of neuromodulatory peptides. We have cloned a zebrafish gene, which is presumably a homologue to the mammalian PQRF subfamily of RFamides, and named it zfPQRF for its species and subfamily allocation. We report that in contrast to its mammalian counterparts zfPQRF is expressed in the olfactory bulb and the nucleus olfactoretinalis in the telencephalon, but absent in more caudal regions, including hypothalamus, brain stem and spinal cord. zfPQRF-expressing neurons originate in the vicinity of the olfactory placode and populate the nuclei of the terminal nerve during later development, as demonstrated by co-expression of zebrafish salmon-type gonadotropin releasing hormone, which was found to exclusively label terminal nerve neurons.


Asunto(s)
Neuronas/metabolismo , Oligopéptidos/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hibridación in Situ , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Filogenia , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA