Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38818792

RESUMEN

Evaluation of: Araki H, Tazawa H, Kanaya N, et al. Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer. Mol Ther Oncolytics. 2022;27:3-13.Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis. PDAC has a dense, desmoplastic stroma and immunosuppressive microenvironment, which impedes current treatment options. Immunotherapy delivered via oncolytic virotherapy is one potential solution to these barriers. Immune checkpoint inhibitors may facilitate immunogenic cell death by improving immune cell infiltration in cancer cells. PD-1 blockade shows better clinical outcomes for certain cancers. The addition of p53 to stimulate cell cycle arrest remains a novel field of research. The evaluated article by Araki et al. explores the efficacy of PD-1 blockade with oncolytic adenovirus platforms on immunogenic cell death and the possibility of combining PD-1 blockade and p53-activation. In vitro analysis showed increased cell death in multiple cell lines infected with AdV mediating p53 expression. The underlying process may attribute to apoptosis and autophagy, with evidence of increased immunogenic cell death. In vivo models demonstrated improved efficacy of p53-expressing AdV, particularly with the addition of PD-1 blockade which appears to be related to CD8+ cell infiltration.

2.
Mob DNA ; 15(1): 10, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711146

RESUMEN

BACKGROUND: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS: Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS: The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.

3.
J Chem Theory Comput ; 20(7): 2921-2933, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38507252

RESUMEN

Accurately predicting protein behavior across diverse pH environments remains a significant challenge in biomolecular simulations. Existing constant-pH molecular dynamics (CpHMD) algorithms are limited to fixed-charge force fields, hindering their application to biomolecular systems described by permanent atomic multipoles or induced dipoles. This work overcomes these limitations by introducing the first polarizable CpHMD algorithm in the context of the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. Additionally, our implementation in the open-source Force Field X (FFX) software has the unique ability to handle titration state changes for crystalline systems including flexible support for all 230 space groups. The evaluation of constant-pH molecular dynamics (CpHMD) with the AMOEBA force field was performed on 11 crystalline peptide systems that span the titrating amino acids (Asp, Glu, His, Lys, and Cys). Titration states were correctly predicted for 15 out of the 16 amino acids present in the 11 systems, including for the coordination of Zn2+ by cysteines. The lone exception was for a HIS-ALA peptide where CpHMD predicted both neutral histidine tautomers to be equally populated, whereas the experimental model did not consider multiple conformers and diffraction data are unavailable for rerefinement. This work demonstrates the promise polarizable CpHMD simulations for pKa predictions, the study of biochemical mechanisms such as the catalytic triad of proteases, and for improved protein-ligand binding affinity accuracy in the context of pharmaceutical lead optimization.


Asunto(s)
Amoeba , Proteínas/química , Péptidos , Simulación de Dinámica Molecular , Concentración de Iones de Hidrógeno , Aminoácidos
4.
Nat Ecol Evol ; 8(4): 777-790, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383850

RESUMEN

Chromosomes are a central unit of genome organization. One-tenth of all described species on Earth are butterflies and moths, the Lepidoptera, which generally possess 31 chromosomes. However, some species display dramatic variation in chromosome number. Here we analyse 210 chromosomally complete lepidopteran genomes and show that the chromosomes of extant lepidopterans are derived from 32 ancestral linkage groups, which we term Merian elements. Merian elements have remained largely intact through 250 million years of evolution and diversification. Against this stable background, eight lineages have undergone extensive reorganization either through numerous fissions or a combination of fusion and fission events. Outside these lineages, fusions are rare and fissions are rarer still. Fusions often involve small, repeat-rich Merian elements and the sex-linked element. Our results reveal the constraints on genome architecture in Lepidoptera and provide a deeper understanding of chromosomal rearrangements in eukaryotic genome evolution.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Mariposas Diurnas/genética , Cromosomas , Genómica/métodos , Genoma , Mariposas Nocturnas/genética
5.
PLoS Genet ; 20(1): e1011116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227589

RESUMEN

Heteromorphic sex chromosomes are usually thought to have originated from a pair of autosomes that acquired a sex-determining locus and subsequently stopped recombining, leading to degeneration of the sex-limited chromosome. The majority of nematode species lack heteromorphic sex chromosomes and determine sex using an X-chromosome counting mechanism, with males being hemizygous for one or more X chromosomes (XX/X0). Some filarial nematode species, including important parasites of humans, have heteromorphic XX/XY karyotypes. It has been assumed that sex is determined by a Y-linked locus in these species. However, karyotypic analyses suggested that filarial Y chromosomes are derived from the unfused homologue of an autosome involved in an X-autosome fusion event. Here, we generated a chromosome-level reference genome for Litomosoides sigmodontis, a filarial nematode with the ancestral filarial karyotype and sex determination mechanism (XX/X0). By mapping the assembled chromosomes to the rhabditid nematode ancestral linkage (or Nigon) elements, we infer that the ancestral filarial X chromosome was the product of a fusion between NigonX (the ancestrally X-linked element) and NigonD (ancestrally autosomal). In the two filarial lineages with XY systems, there have been two independent X-autosome chromosome fusion events involving different autosomal Nigon elements. In both lineages, the region shared by the neo-X and neo-Y chromosomes is within the ancestrally autosomal portion of the X, confirming that the filarial Y chromosomes are derived from the unfused homologue of the autosome. Sex determination in XY filarial nematodes therefore likely continues to operate via the ancestral X-chromosome counting mechanism, rather than via a Y-linked sex-determining locus.


Asunto(s)
Filarioidea , Nematodos , Animales , Masculino , Humanos , Cromosoma Y/genética , Cromosomas Sexuales , Cromosoma X/genética , Cromosomas Humanos X , Filarioidea/genética
6.
Nat Commun ; 14(1): 7776, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012132

RESUMEN

Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.


Asunto(s)
Nematospiroides dubius , Trichostrongyloidea , Ratones , Animales , Interacciones Huésped-Parásitos/fisiología , Nematospiroides dubius/genética
7.
BMC Genomics ; 24(1): 486, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626289

RESUMEN

BACKGROUND: The nematode Caenorhabditis briggsae has been used as a model in comparative genomics studies with Caenorhabditis elegans because of their striking morphological and behavioral similarities. However, the potential of C. briggsae for comparative studies is limited by the quality of its genome resources. The genome resources for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans. The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of software-derived gene predictions that contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 gene models and underlying transcriptomic data to repair software-derived errors. RESULTS: We designed a detailed workflow to train a team of nine students to manually curate gene models using RNA read alignments. We manually inspected the gene models, proposed corrections to the coding sequences of over 8,000 genes, and modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality and showed that manual curation led to substantial improvements in the protein sequence length accuracy of QX1410 genes. Additionally, collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. CONCLUSIONS: Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. Our manual curation efforts have brought the QX1410 gene models to a comparable level of quality as the extensively curated AF16 gene models. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.


Asunto(s)
Caenorhabditis , Humanos , Animales , Caenorhabditis/genética , Caenorhabditis elegans/genética , Exones , Secuencia de Aminoácidos , Perfilación de la Expresión Génica
8.
Pharm Res ; 40(12): 2847-2858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37505378

RESUMEN

PURPOSE: To investigate the production and physical stability of coamorphous materials (CAM) of naringenin (NAR) and coformers-caffeine, theophylline or theobromine (CAF/THY/THE, respectively). We independently assessed the impact of moisture and temperature on the physical stability of CAMs, and transformation products after destabilization were examined. METHODS: Neat grinding, liquid assisted grinding and water slurry were selected to prepare multi-component materials with NAR and CAF, THY or THE. The physical stability of CAMs was investigated at 65°C/<10%RH, 21°C/85% RH and 21°C/<10% RH. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were employed to monitor for recrystallization during the stability studies. Glass forming ability of amorphous NAR was assessed to understand CAM formation and physical stability. RESULTS: NAR:THY and NAR:THE CAMs showed physical stability for approximately nine months, under 21°C/<10% RH while NAR:CAF CAMs destabilized in 2.5 weeks. All CAMs recrystallized within a week at 65°C/<10%RH, and the physical stability at 21°C/85% RH was in the order of - NAR:THY > NAR:THE > NAR:CAF. NAR:THY produced 1:1 cocrystal under all storage conditions, while NAR:CAF destabilized to a 1:1 cocrystal at high RH but a physical mixture at high temperature. NAR:THE was found to recrystallize as a physical mixture in all conditions. NAR was found to be strong glass, with moderate kinetic fragility and good glass forming ability. CONCLUSION: Five naringenin-based multi-component solids were generated in this study: 3 new CAMs, 1 new cocrystal, and 1 previously reported cocrystal. Destabilization of CAMs was found to be exposure specific and coformer dependent.


Asunto(s)
Cafeína , Teofilina , Teofilina/química , Teobromina , Cristalización , Rastreo Diferencial de Calorimetría , Difracción de Rayos X , Estabilidad de Medicamentos , Solubilidad
9.
PLoS Genet ; 19(7): e1010798, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498820

RESUMEN

Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis when environmental conditions are unfavorable. This state-transition requires execution of a combination of genetic and biochemical pathways that enable the organism to survive for prolonged periods. Recently, nematode individuals have been reanimated from Siberian permafrost after remaining in cryptobiosis. Preliminary analysis indicates that these nematodes belong to the genera Panagrolaimus and Plectus. Here, we present precise radiocarbon dating indicating that the Panagrolaimus individuals have remained in cryptobiosis since the late Pleistocene (~46,000 years). Phylogenetic inference based on our genome assembly and a detailed morphological analysis demonstrate that they belong to an undescribed species, which we named Panagrolaimus kolymaensis. Comparative genome analysis revealed that the molecular toolkit for cryptobiosis in P. kolymaensis and in C. elegans is partly orthologous. We show that biochemical mechanisms employed by these two species to survive desiccation and freezing under laboratory conditions are similar. Our experimental evidence also reveals that C. elegans dauer larvae can remain viable for longer periods in suspended animation than previously reported. Altogether, our findings demonstrate that nematodes evolved mechanisms potentially allowing them to suspend life over geological time scales.


Asunto(s)
Nematodos , Hielos Perennes , Humanos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Larva/genética , Larva/metabolismo , Filogenia
10.
Proc Natl Acad Sci U S A ; 120(26): e2221150120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339205

RESUMEN

From bacterial quorum sensing to human language, communication is essential for social interactions. Nematodes produce and sense pheromones to communicate among individuals and respond to environmental changes. These signals are encoded by different types and mixtures of ascarosides, whose modular structures further enhance the diversity of this nematode pheromone language. Interspecific and intraspecific differences in this ascaroside pheromone language have been described previously, but the genetic basis and molecular mechanisms underlying the variation remain largely unknown. Here, we analyzed natural variation in the production of 44 ascarosides across 95 wild Caenorhabditis elegans strains using high-performance liquid chromatography coupled to high-resolution mass spectrometry. We discovered wild strains defective in the production of specific subsets of ascarosides (e.g., the aggregation pheromone icas#9) or short- and medium-chain ascarosides, as well as inversely correlated patterns between the production of two major classes of ascarosides. We investigated genetic variants that are significantly associated with the natural differences in the composition of the pheromone bouquet, including rare genetic variants in key enzymes participating in ascaroside biosynthesis, such as the peroxisomal 3-ketoacyl-CoA thiolase, daf-22, and the carboxylesterase cest-3. Genome-wide association mappings revealed genomic loci harboring common variants that affect ascaroside profiles. Our study yields a valuable dataset for investigating the genetic mechanisms underlying the evolution of chemical communication.


Asunto(s)
Caenorhabditis elegans , Nematodos , Animales , Humanos , Caenorhabditis elegans/genética , Feromonas/química , Estudio de Asociación del Genoma Completo , Variación Genética
11.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292880

RESUMEN

Background: The nematode Caenorhabditis briggsae has been used as a model for genomics studies compared to Caenorhabditis elegans because of its striking morphological and behavioral similarities. These studies yielded numerous findings that have expanded our understanding of nematode development and evolution. However, the potential of C. briggsae to study nematode biology is limited by the quality of its genome resources. The reference genome and gene models for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans . The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of protein-coding gene predictions generated from short- and long-read transcriptomic data. Because of the limitations of gene prediction software, the existing gene models for QX1410 contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 software-derived gene models and underlying transcriptomic data to improve the protein-coding gene models of the C. briggsae QX1410 genome. Results: We designed a detailed workflow to train a team of nine students to manually curate genes using RNA read alignments and predicted gene models. We manually inspected the gene models using the genome annotation editor, Apollo, and proposed corrections to the coding sequences of over 8,000 genes. Additionally, we modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality before and after curation. Manual curation led to a substantial improvement in the protein sequence length accuracy of QX1410 genes. We also compared the curated QX1410 gene models against the existing AF16 gene models. The manual curation efforts yielded QX1410 gene models that are similar in quality to the extensively curated AF16 gene models in terms of protein-length accuracy and biological completeness scores. Collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. Conclusions: Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. Comparative genomic analysis using a related species with high-quality reference genome(s) and gene models can be used to quantify improvements in gene model quality in a newly sequenced genome. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. The chromosome-level reference genome for the C. briggsae strain QX1410 far surpasses the quality of the genome of the laboratory strain AF16, and our manual curation efforts have brought the QX1410 gene models to a comparable level of quality to the previous reference, AF16. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.

12.
Ann Surg ; 277(1): 9-17, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170538

RESUMEN

OBJECTIVE: The aim of this study was to demonstrate the ability of the Versius Surgical System to successfully and safely complete cholecystectomy. BACKGROUND: The system has been developed in-line with surgeon feedback to overcome limitations of conventional laparoscopy to enhance surgeon experience and patient outcomes. Here we present results from the cholecystectomy cohort from a completed early clinical trial, which was designed to broadly align with Stage 2b of the Idea, Development, Exploration, Assessment, Long-term follow-up framework for surgical innovation. METHODS: Procedures were performed between March 2019 and September 2020 by surgical teams consisting of a lead surgeon and operating room (OR) assistants. Male or female patients aged 18 years and over and requiring cholecystectomy were enrolled. The primary endpoint was the rate of unplanned conversion from robot-assisted surgery to conventional laparoscopic or open surgery. Adverse events (AEs) and serious AEs were adjudicated by video review of the surgery and patient study reports by an independent Clinical Expert Committee. RESULTS: Overall, 134/143 (93.7%) cholecystectomies were successfully completed using the device. Of the 9 (6.3%) conversions to another surgical modality, 7 were deemed to be related to the device. A total of 6 serious AEs and 3 AEs occurred in 8 patients (5.6%), resulting in 4 (2.8%) readmissions to hospital within 30 days of surgery and 1 death. CONCLUSIONS: This study demonstrates cholecystectomy performed using the device is as safe and effective as conventional laparoscopy and supports the implementation of the device on a wider scale, pending instrument modifications, in alignment with Idea, Development, Exploration, Assessment, Long-term follow-up Stage 3 (Assessment).


Asunto(s)
Colecistectomía Laparoscópica , Laparoscopía , Robótica , Adolescente , Adulto , Femenino , Humanos , Masculino , Colecistectomía/métodos , Colecistectomía Laparoscópica/métodos , Laparoscopía/métodos , Estudios Prospectivos , Robótica/métodos
13.
Int J Parasitol ; 52(10): 677-689, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36113620

RESUMEN

Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 ß-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 ß-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 ß-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.


Asunto(s)
Antihelmínticos , Hemoncosis , Haemonchus , Ovinos , Animales , Haemonchus/genética , Tubulina (Proteína)/genética , Resistencia a Medicamentos/genética , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Genómica , Hemoncosis/tratamiento farmacológico , Hemoncosis/veterinaria , Hemoncosis/parasitología
14.
Ecol Evol ; 12(7): e9124, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35898425

RESUMEN

Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.

15.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758641

RESUMEN

In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Roturas del ADN de Doble Cadena , Meiosis , Recombinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Elife ; 112022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727141

RESUMEN

Starvation resistance is important to disease and fitness, but the genetic basis of its natural variation is unknown. Uncovering the genetic basis of complex, quantitative traits such as starvation resistance is technically challenging. We developed a synthetic-population (re)sequencing approach using molecular inversion probes (MIP-seq) to measure relative fitness during and after larval starvation in Caenorhabditis elegans. We applied this competitive assay to 100 genetically diverse, sequenced, wild strains, revealing natural variation in starvation resistance. We confirmed that the most starvation-resistant strains survive and recover from starvation better than the most starvation-sensitive strains using standard assays. We performed genome-wide association (GWA) with the MIP-seq trait data and identified three quantitative trait loci (QTL) for starvation resistance, and we created near isogenic lines (NILs) to validate the effect of these QTL on the trait. These QTL contain numerous candidate genes including several members of the Insulin/EGF Receptor-L Domain (irld) family. We used genome editing to show that four different irld genes have modest effects on starvation resistance. Natural variants of irld-39 and irld-52 affect starvation resistance, and increased resistance of the irld-39; irld-52 double mutant depends on daf-16/FoxO. DAF-16/FoxO is a widely conserved transcriptional effector of insulin/IGF signaling (IIS), and these results suggest that IRLD proteins modify IIS, although they may act through other mechanisms as well. This work demonstrates efficacy of using MIP-seq to dissect a complex trait and it suggests that irld genes are natural modifiers of starvation resistance in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Inanición , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Estudio de Asociación del Genoma Completo , Insulina/metabolismo , Inanición/genética
17.
Genome Biol Evol ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35348662

RESUMEN

The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome-conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae.


Asunto(s)
Caenorhabditis , Animales , Caenorhabditis/genética , Caenorhabditis elegans/genética , Cromosomas , Genoma , Genómica
18.
J Pharm Sci ; 111(2): 440-449, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34516989

RESUMEN

Drug product performance is polymorph specific, and it is imperative that solid phase stability be monitored throughout the manufacturing process to ensure final product quality and performance. PXRD remains the gold standard for polymorph identification, but due to a growing interest in continuous manufacturing, a need has emerged for alternative process analytical technologies (PATs) that can provide fast, reliable, and non-destructive polymorph discrimination amenable to in situ process monitoring. Herein we demonstrate an original application of powder Brillouin light scattering (p-BLS) for the discrimination of polymorphic molecular solids. We hypothesize that the anisotropic sound velocities directly reflect the strength and orientation of the intermolecular forces in molecular solids. Redistributing these forces upon polymorphic conversion should thus clearly be reflected in the sound frequency distributions obtained by p-BLS. To test this hypothesis, three model compounds - resorcinol, sulfamerazine and furosemide - were selected. Distinct, polymorph-specific, acoustic frequency distributions were observed, and these p-BLS spectra were interpreted using a hydrogen-bond analysis and energy frameworks calculated from CrystalExplorer. In conclusion, this study clearly demonstrates that the sound frequencies measured in p-BLS are sensitive to the interaction forces in molecular solids, and p-BLS is a novel optical technique capable of reliably discriminating polymorphs. Extending this study further, we fully expect that many pharmaceutically relevant processes - e.g., hydrate formation, co-crystallization, or amorphous instability - could potentially be monitored using p-BLS.


Asunto(s)
Luz , Fenómenos Mecánicos , Anisotropía , Cristalización/métodos , Polvos/química
19.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622777

RESUMEN

Despite reports of parental exposure to stress promoting physiological adaptations in progeny in diverse organisms, there remains considerable debate over the significance and evolutionary conservation of such multigenerational effects. Here, we investigate four independent models of intergenerational adaptations to stress in Caenorhabditis elegans - bacterial infection, eukaryotic infection, osmotic stress, and nutrient stress - across multiple species. We found that all four intergenerational physiological adaptations are conserved in at least one other species, that they are stress -specific, and that they have deleterious tradeoffs in mismatched environments. By profiling the effects of parental bacterial infection and osmotic stress exposure on progeny gene expression across species, we established a core set of 587 genes that exhibited a greater than twofold intergenerational change in expression in response to stress in C. elegans and at least one other species, as well as a set of 37 highly conserved genes that exhibited a greater than twofold intergenerational change in expression in all four species tested. Furthermore, we provide evidence suggesting that presumed adaptive and deleterious intergenerational effects are molecularly related at the gene expression level. Lastly, we found that none of the effects we detected of these stresses on C. elegans F1 progeny gene expression persisted transgenerationally three generations after stress exposure. We conclude that intergenerational responses to stress play a substantial and evolutionarily conserved role in regulating animal physiology and that the vast majority of the effects of parental stress on progeny gene expression are reversible and not maintained transgenerationally.


Asunto(s)
Adaptación Biológica , Caenorhabditis elegans , Evolución Molecular , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/parasitología , Caenorhabditis elegans/fisiología , Estado Nutricional , Presión Osmótica
20.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34343278

RESUMEN

Bivalve molluscs comprise 20,000 species occupying a wide diversity of marine habitats. As filter feeders and detritivores they act as ecosystem engineers clarifying water, creating reefs, and protecting coastlines. The global decline of natural oyster reefs has led to increased restoration efforts in recent years. Bivalves also play an important role in global food security contributing to >20% of worldwide aquaculture production. Despite this importance, relatively little is known about bivalve evolutionary adaptation strategies. Difficulties previously associated with highly heterozygous and repetitive regions of bivalve genomes have been overcome by long-read sequencing, enabling the generation of accurate bivalve assemblies. With these resources we have analyzed the genomes of 32 species representing each molluscan class, including 15 bivalve species, to identify gene families that have undergone expansion during bivalve evolution. Gene family expansions across bivalve genomes occur at the point of evolutionary pressures. We uncovered two key factors that shape bivalve evolutionary history: expansion of bivalvia into environmental niches with high stress followed by later exposure to specific pathogenic pressures. The conserved expansion of protein recycling gene families we found across bivalvia is mirrored by adaptations to a sedentary lifestyle seen in plants. These results reflect the ability of bivalves to tolerate high levels of environmental stress and constant exposure to pathogens as filter feeders. The increasing availability of accurate genome assemblies will provide greater resolution to these analyses allowing further points of evolutionary pressure to become clear in other understudied taxa and potentially different populations of a single species.


Asunto(s)
Bivalvos , Ecosistema , Adaptación Fisiológica , Animales , Bivalvos/genética , Bivalvos/metabolismo , Genoma , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA