Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(8): 4527-4533, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789888

RESUMEN

Electrons in solids often adopt complex patterns of chemical bonding driven by the competition between energy gains from covalency and delocalization, and energy costs of double occupation to satisfy Pauli exclusion, with multiple intermediate states in the transition between highly localized, and magnetic, and delocalized, and nonmagnetic limits. Herein, we report a chemical pressure-driven transition from a proper Mn magnetic ordering phase transition to a Mn magnetic phase crossover in EuMn2P2 the limiting end member of the EuMn2X2 (X = Sb, As, P) family of layered materials. This loss of a magnetic ordering occurs despite EuMn2P2 remaining an insulator at all temperatures, and with a phase transition to long-range Eu antiferromagnetic order at TN ≈ 17 K. The absence of a Mn magnetic phase transition contrasts with the formation of long-range Mn order at T ≈ 130 K in isoelectronic EuMn2Sb2 and EuMn2As2. Temperature-dependent specific heat and 31P NMR measurements provide evidence for the development of short-range Mn magnetic correlations from T ≈ 250-100 K, interpreted as a precursor to covalent bond formation. Density functional theory calculations demonstrate an unusual sensitivity of the band structure to the details of the imposed Mn and Eu magnetic order, with an antiferromagnetic Mn arrangement required to recapitulate an insulating state. Our results imply a picture in which long-range Mn magnetic order is suppressed by chemical pressure, but that antiferromagnetic correlations persist, narrowing bands and producing an insulating state.

2.
ACS Cent Sci ; 7(8): 1381-1390, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34471681

RESUMEN

Chemical bonding in 2D layered materials and van der Waals solids is central to understanding and harnessing their unique electronic, magnetic, optical, thermal, and superconducting properties. Here, we report the discovery of spontaneous, bidirectional, bilayer twisting (twist angle ∼4.5°) in the metallic kagomé MgCo6Ge6 at T = 100(2) K via X-ray diffraction measurements, enabled by the preparation of single crystals by the Laser Bridgman method. Despite the appearance of static twisting on cooling from T ∼300 to 100 K, no evidence for a phase transition was found in physical property measurements. Combined with the presence of an Einstein phonon mode contribution in the specific heat, this implies that the twisting exists at all temperatures but is thermally fluctuating at room temperature. Crystal Orbital Hamilton Population analysis demonstrates that the cooperative twisting between layers stabilizes the Co-kagomé network when coupled to strongly bonded and rigid (Ge2) dimers that connect adjacent layers. Further modeling of the displacive disorder in the crystal structure shows the presence of a second, Mg-deficient, stacking sequence. This alternative stacking sequence also exhibits interlayer twisting, but with a different pattern, consistent with the change in electron count due to the removal of Mg. Magnetization, resistivity, and low-temperature specific heat measurements are all consistent with a Pauli paramagnetic, strongly correlated metal. Our results provide crucial insight into how chemical concepts lead to interesting electronic structures and behaviors in layered materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA