Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798678

RESUMEN

Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Upon classical macrophage activation, oxidative phosphorylation sharply decreases and mitochondria are repurposed to accumulate signals that amplify effector function. However, evidence is conflicting as to whether this collapse in respiration is essential or largely dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Only stimuli that engage both MyD88- and TRIF-linked pathways decrease mitochondrial respiration, and different pro-inflammatory stimuli have varying effects on other bioenergetic parameters. Additionally, pharmacologic and genetic models of electron transport chain inhibition show no direct link between respiration and pro-inflammatory activation. Studies in mouse and human macrophages also reveal accumulation of the signaling metabolites succinate and itaconate can occur independently of characteristic breaks in the TCA cycle. Finally, in vivo activation of peritoneal macrophages further demonstrates that a pro-inflammatory response can be elicited without reductions to oxidative phosphorylation. Taken together, the results suggest the conventional model of mitochondrial reprogramming upon macrophage activation is incomplete.

2.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569044

RESUMEN

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Asunto(s)
Insulinas , Succinato Deshidrogenasa , Animales , Humanos , Masculino , Ratones , Insulinas/metabolismo , Lípidos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Succinato Deshidrogenasa/metabolismo
3.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562777

RESUMEN

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

4.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496679

RESUMEN

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

5.
J Biol Chem ; 300(3): 105702, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301896

RESUMEN

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid) is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and branched-chain α-ketoacid levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here, we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show that BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly sixfold less potent than the prototypical uncoupler 2,4-dinitrophenol and phenocopies 2,4-dinitrophenol in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest that the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.


Asunto(s)
Lipogénesis , Enfermedades Metabólicas , Membranas Mitocondriales , Inhibidores de Proteínas Quinasas , Especies Reactivas de Oxígeno , Humanos , 2,4-Dinitrofenol/farmacología , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Lipogénesis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Ratas , Línea Celular , Membranas Mitocondriales/efectos de los fármacos , Células Cultivadas
6.
Front Neurol ; 14: 1268411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020654

RESUMEN

Introduction: Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods: Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results: RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion: Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.

8.
J Parkinsons Dis ; 13(7): 1127-1147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638450

RESUMEN

BACKGROUND: Evidence supports a role for the gut-brain axis in Parkinson's disease (PD). Mice overexpressing human wild type α- synuclein (Thy1-haSyn) exhibit slow colonic transit prior to motor deficits, mirroring prodromal constipation in PD. Identifying molecular changes in the gut could provide both biomarkers for early diagnosis and gut-targeted therapies to prevent progression. OBJECTIVE: To identify early molecular changes in the gut-brain axis in Thy1-haSyn mice through gene expression profiling. METHODS: Gene expression profiling was performed on gut (colon) and brain (striatal) tissue from Thy1-haSyn and wild-type (WT) mice aged 1 and 3 months using 3' RNA sequencing. Analysis included differential expression, gene set enrichment and weighted gene co-expression network analysis (WGCNA). RESULTS: At one month, differential expression (Thy1-haSyn vs. WT) of mitochondrial genes and pathways related to PD was discordant between gut and brain, with negative enrichment in brain (enriched in WT) but positive enrichment in gut. Linear regression of WGCNA modules showed partial independence of gut and brain gene expression changes. Thy1-haSyn-associated WGCNA modules in the gut were enriched for PD risk genes and PD-relevant pathways including inflammation, autophagy, and oxidative stress. Changes in gene expression were modest at 3 months. CONCLUSIONS: Overexpression of haSyn acutely disrupts gene expression in the colon. While changes in colon gene expression are highly related to known PD-relevant mechanisms, they are distinct from brain changes, and in some cases, opposite in direction. These findings are in line with the emerging view of PD as a multi-system disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Colon , Modelos Animales de Enfermedad , Expresión Génica , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
9.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645724

RESUMEN

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids (BCKAs) are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and BCKA levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly five-fold less potent than the prototypical uncoupler 2,4-dinitrophenol (DNP), and phenocopies DNP in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.

10.
Mol Cancer Ther ; 22(11): 1290-1303, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643767

RESUMEN

DLBCL are aggressive, rapidly proliferating tumors that critically depend on the ATF4-mediated integrated stress response (ISR) to adapt to stress caused by uncontrolled growth, such as hypoxia, amino acid deprivation, and accumulation of misfolded proteins. Here, we show that ISR hyperactivation is a targetable liability in DLBCL. We describe a novel class of compounds represented by BTM-3528 and BTM-3566, which activate the ISR through the mitochondrial protease OMA1. Treatment of tumor cells with compound leads to OMA1-dependent cleavage of DELE1 and OPA1, mitochondrial fragmentation, activation of the eIF2α-kinase HRI, cell growth arrest, and apoptosis. Activation of OMA1 by BTM-3528 and BTM-3566 is mechanistically distinct from inhibitors of mitochondrial electron transport, as the compounds induce OMA1 activity in the absence of acute changes in respiration. We further identify the mitochondrial protein FAM210B as a negative regulator of BTM-3528 and BTM-3566 activity. Overexpression of FAM210B prevents both OMA1 activation and apoptosis. Notably, FAM210B expression is nearly absent in healthy germinal center B-lymphocytes and in derived B-cell malignancies, revealing a fundamental molecular vulnerability which is targeted by BTM compounds. Both compounds induce rapid apoptosis across diverse DLBCL lines derived from activated B-cell, germinal center B-cell, and MYC-rearranged lymphomas. Once-daily oral dosing of BTM-3566 resulted in complete regression of xenografted human DLBCL SU-DHL-10 cells and complete regression in 6 of 9 DLBCL patient-derived xenografts. BTM-3566 represents a first-of-its kind approach of selectively hyperactivating the mitochondrial ISR for treating DLBCL.


Asunto(s)
Linfoma de Células B , Péptido Hidrolasas , Humanos , Péptido Hidrolasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/metabolismo
11.
EMBO Rep ; 24(10): e56380, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548091

RESUMEN

Oxidative phosphorylation and glycolysis are the dominant ATP-generating pathways in mammalian metabolism. The balance between these two pathways is often shifted to execute cell-specific functions in response to stimuli that promote activation, proliferation, or differentiation. However, measurement of these metabolic switches has remained mostly qualitative, making it difficult to discriminate between healthy, physiological changes in energy transduction or compensatory responses due to metabolic dysfunction. We therefore present a broadly applicable method to calculate ATP production rates from oxidative phosphorylation and glycolysis using Seahorse XF Analyzer data and empirical conversion factors. We quantify the bioenergetic changes observed during macrophage polarization as well as cancer cell adaptation to in vitro culture conditions. Additionally, we detect substantive changes in ATP utilization upon neuronal depolarization and T cell receptor activation that are not evident from steady-state ATP measurements. This method generates a single readout that allows the direct comparison of ATP produced from oxidative phosphorylation and glycolysis in live cells. Additionally, the manuscript provides a framework for tailoring the calculations to specific cell systems or experimental conditions.


Asunto(s)
Smegmamorpha , Animales , Smegmamorpha/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético , Glucólisis , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Mamíferos/metabolismo
12.
Obesity (Silver Spring) ; 31(7): 1798-1811, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37221655

RESUMEN

OBJECTIVE: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) promote urinary glucose excretion, induce weight loss, and reduce fat accumulation. The effects of the SGLT2i dapagliflozin (DAPA) on subcutaneous (SC) and visceral (VIS) adipose tissue function remain unclear. The objective of this study is to evaluate SC and VIS adipose tissue function in an insulin-resistant canine model. METHODS: A total of 12 dogs were fed a high-fat diet (HFD) for 6 weeks and then were given a single low dose of streptozotocin (18.5 mg/kg) to induce insulin resistance. Animals were then randomized and exposed to DAPA (n = 6, 1.25 mg/kg) or placebo (n = 6) once per day for 6 weeks while remaining on the HFD. RESULTS: DAPA prevented further weight gain induced by the HFD and normalized fat mass. DAPA reduced fasting glucose and increased free fatty acids, adiponectin, and ß-hydroxybutyrate. DAPA reduced adipocyte diameter and cell distribution. Furthermore, DAPA increased genes associated with beiging, lipolysis, and adiponectin secretion and the expression of the adiponectin receptor ADR2, in SC and VIS adipose tissue. DAPA increased AMP-activated protein kinase activity and maximal mitochondrial respiratory function, especially in the SC depot. Furthermore, DAPA reduced cytokines and ceramide synthesis enzymes in SC and VIS depots. CONCLUSIONS: For the first time, to our knowledge, we identify mechanisms by which DAPA enhances adipose tissue function in regulating energy homeostasis in an insulin-resistant canine model.


Asunto(s)
Resistencia a la Insulina , Insulina , Perros , Animales , Insulina/metabolismo , Adiponectina/metabolismo , Grasa Subcutánea/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo
13.
Methods Mol Biol ; 2675: 77-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258757

RESUMEN

Methods for isolating mitochondria from different rodent tissues have been established for decades. Although the general principles for crude mitochondrial preparations are largely shared across tissues - tissue disruption followed by differential centrifugation - critical differences exist for isolation from different tissues to optimize mitochondrial yield and function. This protocol offers a unified resource for preparations of isolated mitochondria from mouse liver, kidney, heart, brain, skeletal muscle, and brown and white adipose tissue suitable for functional analysis.


Asunto(s)
Tejido Adiposo Blanco , Mitocondrias , Ratones , Animales , Tejido Adiposo Blanco/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo
14.
PNAS Nexus ; 2(4): pgad105, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37077889

RESUMEN

Adequate thymidylate [deoxythymidine monophosphate (dTMP) or the "T" base in DNA] levels are essential for stability of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Folate and vitamin B12 (B12) are essential cofactors in folate-mediated one-carbon metabolism (FOCM), a metabolic network which supports synthesis of nucleotides (including dTMP) and methionine. Perturbations in FOCM impair dTMP synthesis, causing misincorporation of uracil (or a "U" base) into DNA. During B12 deficiency, cellular folate accumulates as 5-methyltetrahdryfolate (5-methyl-THF), limiting nucleotide synthesis. The purpose of this study was to determine how reduced levels of the B12-dpendent enzyme methionine synthase (MTR) and dietary folate interact to affect mtDNA integrity and mitochondrial function in mouse liver. Folate accumulation, uracil levels, mtDNA content, and oxidative phosphorylation capacity were measured in male Mtr+/+ and Mtr+/- mice weaned onto either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a folate-deficient (FD) diet (lacking folic acid) for 7 weeks. Mtr heterozygosity led to increased liver 5-methyl-THF levels. Mtr+/- mice consuming the C diet also exhibited a 40-fold increase in uracil in liver mtDNA. Mtr+/- mice consuming the FD diet exhibited less uracil accumulation in liver mtDNA as compared to Mtr+/+ mice consuming the FD diet. Furthermore, Mtr+/- mice exhibited 25% lower liver mtDNA content and a 20% lower maximal oxygen consumption rates. Impairments in mitochondrial FOCM are known to lead to increased uracil in mtDNA. This study demonstrates that impaired cytosolic dTMP synthesis, induced by decreased Mtr expression, also leads to increased uracil in mtDNA.

15.
EMBO J ; 42(10): e111699, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36912136

RESUMEN

The maintenance of cellular function relies on the close regulation of adenosine triphosphate (ATP) synthesis and hydrolysis. ATP hydrolysis by mitochondrial ATP Synthase (CV) is induced by loss of proton motive force and inhibited by the mitochondrial protein ATPase inhibitor (ATPIF1). The extent of CV hydrolytic activity and its impact on cellular energetics remains unknown due to the lack of selective hydrolysis inhibitors of CV. We find that CV hydrolytic activity takes place in coupled intact mitochondria and is increased by respiratory chain defects. We identified (+)-Epicatechin as a selective inhibitor of ATP hydrolysis that binds CV while preventing the binding of ATPIF1. In cells with Complex-III deficiency, we show that inhibition of CV hydrolytic activity by (+)-Epichatechin is sufficient to restore ATP content without restoring respiratory function. Inhibition of CV-ATP hydrolysis in a mouse model of Duchenne Muscular Dystrophy is sufficient to improve muscle force without any increase in mitochondrial content. We conclude that the impact of compromised mitochondrial respiration can be lessened using hydrolysis-selective inhibitors of CV.


Asunto(s)
Adenosina Trifosfato , Mitocondrias , Ratones , Animales , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas/metabolismo , Homeostasis , Hidrólisis
16.
EMBO J ; 42(11): e111901, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917141

RESUMEN

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Asunto(s)
Ácidos Grasos , Malonil Coenzima A , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Oxidación-Reducción , Mitocondrias/metabolismo
17.
Nature ; 615(7953): 712-719, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922590

RESUMEN

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Metabolismo Energético , Neoplasias Pulmonares , Mitocondrias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/ultraestructura , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/ultraestructura , Microscopía Electrónica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Fenotipo , Tomografía de Emisión de Positrones
18.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36918278

RESUMEN

Mitochondrial depolarization can initiate reversal activity of ATP synthase, depleting ATP by its hydrolysis. We have recently shown that increased ATP hydrolysis contributes to ATP depletion leading to a maladaptation in mitochondrial disorders, where maximal hydrolytic capacity per CV content is increasing. However, despite its importance, ATP hydrolysis is not a commonly studied parameter because of the limitations of the currently available methods. Methods that measure CV hydrolytic activity indirectly require the isolation of mitochondria and involve the introduction of detergents, preventing their utilization in clinical studies or any high-throughput analyses. Here, we describe a novel approach to assess maximal ATP hydrolytic capacity and maximal respiratory capacity in a single assay in cell lysates, PBMCs, and tissue homogenates that were previously frozen. The methodology described here has the potential to be used in clinical samples to determine adaptive and maladaptive adjustments of CV function in diseases, with the added benefit of being able to use frozen samples in a high-throughput manner and to explore ATP hydrolysis as a drug target for disease treatment.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón Mitocondriales , Hidrólisis , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mitocondrias/metabolismo
19.
Nat Commun ; 13(1): 7037, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396639

RESUMEN

Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective cytokine in multiple models of retinal degeneration. To understand mechanisms underlying its broad neuroprotective effects, we have investigated the influence of CNTF on metabolism in a mouse model of photoreceptor degeneration. CNTF treatment improves the morphology of photoreceptor mitochondria, but also leads to reduced oxygen consumption and suppressed respiratory chain activities. Molecular analyses show elevated glycolytic pathway gene transcripts and active enzymes. Metabolomics analyses detect significantly higher levels of ATP and the energy currency phosphocreatine, elevated glycolytic pathway metabolites, increased TCA cycle metabolites, lipid biosynthetic pathway intermediates, nucleotides, and amino acids. Moreover, CNTF treatment restores the key antioxidant glutathione to the wild type level. Therefore, CNTF significantly impacts the metabolic status of degenerating retinas by promoting aerobic glycolysis and augmenting anabolic activities. These findings reveal cellular mechanisms underlying enhanced neuronal viability and suggest potential therapies for treating retinal degeneration.


Asunto(s)
Factor Neurotrófico Ciliar , Degeneración Retiniana , Ratones , Animales , Factor Neurotrófico Ciliar/genética , Factor Neurotrófico Ciliar/metabolismo , Degeneración Retiniana/terapia , Neuroprotección , Retina/metabolismo , Glucólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA