Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 14453, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262064

RESUMEN

Alloys of Mn55Al45C2 with additions of VC nano-particles have been synthesized and their properties evaluated. The Mn55Al45C2(VC)x (x = 0.25, 0.5 and 1) alloys have been prepared by induction melting resulting in a high content of the ferromagnetic τ-phase (> 94 wt.%). Powder X-ray diffraction indicates that nano-VC can be dissolved in the alloy matrix up to 1 at.%. On the other side, metallography investigations by scanning electron microscopy and scanning transmission electron microscope show inclusions of the nanosized additives in the microstructure. The effect of nano-VC on the grain and twin boundaries has been studied by electron backscattering diffraction. The magnetization has been measured by magnetometry up to 9 T while the domain structure has been studied using both magnetic force microscopy as well as Kerr-microscopy. For nano-VC contents above 0.25 at.%, a clear increase of the coercive force is observed, from 57 to 71 kA/m. The optimum appears to be for 0.5 at.% nano-VC which shows a 25% increase in coercive force without losing any saturation magnetization. This independent increase in coercivity is believed to originate from the nano-VC reducing the overall magnetic domain size. Overall, we observe that addition of nano-VC could be an interesting route to increase the coercive force of MnAl, without sacrificing saturation magnetization.

2.
RSC Adv ; 11(17): 10224-10234, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35423477

RESUMEN

Heterojunction copper-zinc oxide catalysts were prepared by a hybrid two-step methodology comprising hydrothermal growth of ZnO nanorods (ZnO-NR) followed by deposition of Cu2O nanoparticles using an advanced gas deposition technique (AGD). The obtained bicatalysts were characterized by SEM, AFM, XRD, XPS, PL and spectrophotometry and revealed well-dispersed and crystalline Cu2O nanoparticles attached to the ZnO-NR. The adsorption properties and photocatalytic degradation of Orange II dye in water solutions were measured. It was found that the bicatalysts exhibited a conversion rate and quantum yield that both were about 50% higher compared with ZnO-NR alone, which were attributed to the intrinsic electric field created at the p-n junction formed at the Cu2O/ZnO interface facilitating charge separation of electron-hole pairs formed upon interband photon absorption. The interpretation was evidenced by efficient quenching of characteristic deep level ZnO photoluminescence bands and photoelectron core-level energy shifts. By comparisons with known energy levels in Cu2O and ZnO, the effect was found to be most pronounced for the non-polar ZnO-NR side facets, which accounted for about 95% of the exposed surface area of the catalyst and hence the majority of dye adsorption. It was also found that the dye adsorption capacity of the ZnO nanorods increased considerably after Cu2O deposition thereby facilitating the oxidation of the dye. The results imply the possibility of judiciously aligning band edges on structurally controlled and well-connected low-dimensional semiconductor nanostructures using combined two-step synthesis techniques, where in particular vacuum-based techniques such as AGD allow for growth of well-connected nanocrystals with well developed heterojunction interfaces.

4.
ACS Sens ; 5(11): 3510-3519, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33141554

RESUMEN

Understanding the binding mechanism between probe-functionalized magnetic nanoparticles (MNPs) and DNA targets or amplification products thereof is essential in the optimization of magnetic biosensors for the detection of DNA. Herein, the molecular interaction forming hybrid structures upon hybridization between DNA-functionalized magnetic nanoparticles, exhibiting Brownian relaxation, and rolling circle amplification products (DNA-coils) is investigated by the use of atomic force microscopy in a liquid environment and magnetic biosensors measuring the frequency-dependent magnetic response and the frequency-dependent modulation of light transmission. This approach reveals the qualitative and quantitative correlations between the morphological features of the hybrid structures with their magnetic response. The suppression of the high-frequency peak in the magnetic response and the appearance of a new peak at lower frequencies match the formation of larger sized assemblies upon increasing the concentration of DNA-coils. Furthermore, an increase of the DNA-coil concentration induces an increase in the number of MNPs per hybrid structure. This study provides new insights into the DNA-MNP binding mechanism, and its versatility is of considerable importance for the mechanistic characterization of other DNA-nanoparticle biosensor systems.


Asunto(s)
Técnicas Biosensibles , Nanopartículas de Magnetita , ADN/genética , Fenómenos Magnéticos , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA