Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Food Microbiol ; 411: 110520, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141353

RESUMEN

Small pelagic fishes represent one of the most important food resources off the Northwest coast of Africa. Despite their economic significance, little is known about the infections with flesh invading myxosporean parasites of genus Kudoa (Cnidaria, Myxozoa). Heavy infections in the flesh may be associated with post-mortem myoliquefaction, commonly known as 'soft flesh'. This condition may reduce the quality and marketability of the fish fillet, resulting in both economic losses to the fishing industry and loss of consumer confidence. In this study, we investigated Kudoa-induced 'soft flesh' occurrence in European anchovy Engraulis encrasicolus, European pilchard Sardina pilchardus, and Atlantic chub mackerel Scomber colias caught in 2019 off the Moroccan Atlantic coast. Five hundred specimens of each fish species were examined for 'soft flesh' by texture testing and visual inspection 48 h post-catch. 'Soft flesh' occurred in 0.2 % of the European anchovies, 1.4 % of the European pilchard, and in 4.4 % of the Atlantic chub mackerel. Microscopic examination of muscle samples revealed that 'soft flesh'-affected fish were infected with myxospores of K. thyrsites-like morphotype. Analysis of the kudoid SSU rDNA sequence obtained from European pilchard and the Atlantic chub mackerel identified these as K. thyrsites (100 % identity), whereas analysis of the sequence from European anchovy identified the presence of K. encrasicoli (100 % identity). Even if there are no known human health consequences associated with the ingestion of these Kudoa species, the unsightly appearance of some infected fillets is a food quality issue, that can eventually lead to reduced marketability and value.


Asunto(s)
Enfermedades de los Peces , Myxozoa , Parásitos , Perciformes , Animales , Humanos , Myxozoa/genética , Parásitos/genética , Marruecos , Músculos/parasitología , ADN Ribosómico/genética , Perciformes/parasitología , Enfermedades de los Peces/parasitología , Filogenia
2.
Front Microbiol ; 14: 1175304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455746

RESUMEN

Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding ß-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.

3.
PLoS One ; 18(2): e0281537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36757931

RESUMEN

Antagonistic interactions between bacteriophage (phage) and its bacterial host drives the continual selection for resistance and counter-defence. To date, much remains unknown about the genomic evolution that occurs as part of the underlying mechanisms. Such is the case for the marine cyanobacteria Synechococcus and viruses (cyanophages) that infect them. Here, we monitored host and phage abundances, alongside genomic changes to the phage populations, in a 500-day (~55 bacterial generations) infection experiment between Synechococcus sp. WH7803 and the T4-type cyanophage S-PM2d, run parallel in three replicate chemostats (plus one control chemostat). Flow cytometric count of total abundances revealed relatively similar host-phage population dynamics across the chemostats, starting with a cycle of host population collapse and recovery that led to phases of host-phage coexistence. Whole-genome analysis of the S-PM2d populations detected an assemblage of strongly selected and repeatable genomic changes, and therefore parallel evolution in the phage populations, early in the experiment (sampled on day 39). These consisted mostly of non-synonymous single-nucleotide-polymorphisms and a few instances of indel, altogether affecting 18 open-reading-frames, the majority of which were predicted to encode virion structures including those involved in phage adsorption onto host (i.e., baseplate wedge, short tail fibre, adhesin component). Mutations that emerged later (sampled on day 500), on the other hand, were found at a larger range of frequencies, with many lacking repeatability across the chemostats. This is indicative of some degree of between-population divergence in the phage evolutionary trajectory over time. A few of the early and late mutations were detected within putative auxiliary metabolic genes, but these generally occurred in only one or two of the chemostats. Less repeatable mutations may have higher fitness costs, thus drawing our attention onto the role of trade-offs in modulating the trajectory of a host-phage coevolution.


Asunto(s)
Bacteriófagos , Synechococcus , Bacteriófagos/genética , Evolución Molecular , Mutación , Synechococcus/genética , Synechococcus/virología
4.
Parasitology ; 149(14): 1942-1957, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36321524

RESUMEN

Northeast Arctic cod, saithe and haddock are among the most important fisheries resources in Europe, largely shipped to various continental markets. The present study aimed to map the presence and distribution of larvae of parasitic nematodes in the Anisakidae family which are of socioeconomic and public health concern. Fishes were sourced from commercial catches during winter or spring in the southern Barents Sea. Samples of fish were inspected for nematodes using the UV-press method while anisakid species identification relied on sequencing of the mtDNA cox2 gene. Anisakis simplex (s.s.) was the most prevalent and abundant anisakid recorded, occurring at high infection levels in the viscera and flesh of cod and saithe, while being less abundant in haddock. Contracaecum osculatum (s.l.) larvae, not found in the fish flesh, showed moderate-to-high prevalence in saithe, haddock and cod, respectively. Most Pseudoterranova spp. larvae occurred at low-to-moderate prevalence, and low abundance, in the viscera (Pseudoterranova bulbosa) and flesh (Pseudoterranova decipiens (s.s.) and Pseudoterranova krabbei) of cod, only 2 P. decipiens (s.s.) appeared in the flesh of saithe. Body length was the single most important host-related factor to predict overall abundance of anisakid larvae in the fish species. The spatial distribution of Anisakis larvae in the fish flesh showed much higher abundances in the belly flaps than in the dorsal fillet parts. Trimming of the flesh by removing the belly flaps would reduce larval presence in the fillets of these gadid fish species by 86­91%.


Asunto(s)
Anisakiasis , Anisakis , Ascaridoidea , Enfermedades de los Peces , Gadiformes , Parásitos , Animales , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Ascaridoidea/genética , Anisakis/genética , Peces/parasitología , Larva/genética , Anisakiasis/epidemiología , Anisakiasis/veterinaria , Anisakiasis/parasitología
5.
Sci Rep ; 12(1): 17695, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271251

RESUMEN

The genus Pseudoterranova includes parasite species of cetaceans and pinnipeds. The third stage larva (L3) of seal-infecting species occur in second intermediate or paratenic fish hosts mainly in neritic waters. This study firstly describes a Pseudoterranova L3 from meso/bathypelagic fishes off Macaronesia. L3s were morphologically and genetically studied by light microscopy and sequencing of the mtDNA cox2 and entire ITS rDNA genes. Bayesian inferences were performed with sequences from the larvae and selected sequences from GenBank. The nematode L3s were molecularly identified as Pseudoterranova ceticola, a parasite of kogiid whales. Such larvae were collected from Bolinichthys indicus, Chauliodus danae, Eupharynx pelecanoides, Diaphus rafinesquii, D. mollis, Diretmus argenteus and Maulisia argipalla. They mainly occurred in the viscera of these fishes. Pseudoterranova ceticola L3 were small (< 12 mm) and whitish, and a prominent characteristic is a circumoral ridge extending from the ventral boring tooth which differentiate them from Pseudoterranova spp. L3 maturing in pinnipeds and Terranova sensu lato larvae that mature in poikilotherms. The shape of the tail: conical, long, pointed, ventrally curved and lacking mucron also distinguish these larvae from those of the pinniped-infecting Pseudoterranova spp. Phylogenetic analyses based on mtDNA cox2 and ITS rDNA sequences suggest that P. ceticola is closely related to Skrjabinisakis spp., and not with Pseudoterranova spp. parasitizing pinnipeds. The related species Skrjabinisakis paggiae, S. brevispiculata and S. physeteris (until recently belonging to genus Anisakis), are as P. ceticola also parasites of physeteroid cetaceans. The morphology and morphological variation of the larvae of the cetacean parasite P. ceticola is thoroughly described for the first time. These L3 can readily be morphologically distinguished from those of the pinniped-infecting Pseudoterranova spp. The parasite likely completes its life cycle in the mesopelagic and bathypelagic realm, with meso/bathypelagic fish as 2nd intermediate or paratenic hosts and kogiids as final host. Thus, Pseudoterranova from cetaceans appear to be morphologically, genetically, and ecologically differentiated to those from pinnipeds, suggesting that they are not congeneric.


Asunto(s)
Ascaridoidea , Caniformia , Enfermedades de los Peces , Animales , Larva , Filogenia , Ciclooxigenasa 2/genética , Teorema de Bayes , Ascaridoidea/genética , Peces/genética , ADN Ribosómico/genética , Ballenas/genética , ADN Mitocondrial/genética , Enfermedades de los Peces/parasitología
6.
Food Waterborne Parasitol ; 28: e00177, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36072478

RESUMEN

Nematode parasites of the genus Anisakis (Nematoda, Anisakidae) are considered among the most important biological hazards in seafood products worldwide. In temperate and tropical waters, the most common species appears to be Anisakis typica, generally found around the viscera and sporadically in the flesh of various fish host species. This study investigated the infection sites and genetic diversity of A. typica infecting commercial fishes from the South-West Indian Ocean. Largehead hairtail (N = 20) and brushtooth lizardfish (N = 72) fished off Tanzania were inspected for anisakid nematodes by UV-press. A subsample of 168 nematodes were identified by sequence analyses of the cox2 mtDNA gene and ITS region of rDNA. The species A. typica (s.l.) (N = 166), Pseudoterranova ceticola (N = 1) and Anisakis paggiae (N = 1) were molecularly identified. Phylogenetic analysis of A. typica (s.l.) sequences based on both genes, indicated the existence of two distinct phylogenetic lineages forming two well-supported clades. The first clade comprised 12 A. typica specimens including individuals from its type locality (central Atlantic Ocean). The second clade comprising 154 specimens, clustered with reference sequences retrieved from GenBank including one apparently undescribed taxon, i.e., Anisakis sp. 1, and A. typica var. indonesiensis. The two reciprocally monophyletic clades are closely related and correspond to two distinct sister species within A. typica (s.l.), presently indicated as A. typica sp. A and A. typica sp. B. Two and four fixed alternative nucleotide substitutions (SNPs), i.e., diagnostic positions, between the two taxa, respectively, were found at the mtDNA cox2 and the ITS region of rDNA. The genetic data, as well as their occurrence in sympatry, strengthens the hypothesis that the actual specimens represent two distinct gene pools. The occurrence of both A. typica sp. A and A. typica sp. B in the musculature of freshly examined T. lepturus and S. undosquamis, suggests that both species can migrate intra-vitam into the flesh. Although the zoonotic potential of A. typica s.l. is still unclear, the presence of these parasites in the musculature, edible part of the fish, raises health concerns for consumers.

7.
Microorganisms ; 10(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014036

RESUMEN

The Arctic is warming 2-3 times faster than the global average, leading to a decrease in Arctic sea ice extent, thickness, and associated changes in sea ice structure. These changes impact sea ice habitat properties and the ice-associated ecosystems. Sea-ice algal blooms provide various algal-derived carbon sources for the bacterial and archaeal communities within the sea ice. Here, we detail the transition of these communities from winter through spring to early summer during the Norwegian young sea ICE (N-ICE2015) expedition. The winter community was dominated by the archaeon Candidatus Nitrosopumilus and bacteria belonging to the Gammaproteobacteria (Colwellia, Kangiellaceae, and Nitrinocolaceae), indicating that nitrogen-based metabolisms, particularly ammonia oxidation to nitrite by Cand. Nitrosopumilus was prevalent. At the onset of the vernal sea-ice algae bloom, the community shifted to the dominance of Gammaproteobacteria (Kangiellaceae, Nitrinocolaceae) and Bacteroidia (Polaribacter), while Cand. Nitrosopumilus almost disappeared. The bioinformatically predicted carbohydrate-active enzymes increased during spring and summer, indicating that sea-ice algae-derived carbon sources are a strong driver of bacterial and archaeal community succession in Arctic sea ice during the change of seasons. This implies a succession from a nitrogen metabolism-based winter community to an algal-derived carbon metabolism-based spring/ summer community.

8.
Parasitol Res ; 121(8): 2325-2336, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716177

RESUMEN

Kudoa thyrsites is a myxosporean parasite (Cnidaria, Myxozoa) that infects the skeletal and cardiac muscle of Northeast Atlantic (NEA) mackerel (Scomber scombrus). Heavy infections are associated with post-mortem myoliquefaction of the host skeletal muscle which reduces the quality of the fish product. The biological infection characteristics of the parasite in NEA mackerel are poorly known. This study examined the distribution of K. thyrsites in various organs of NEA mackerel from the northern North Sea, and elucidates the relationship between density of infection, developmental stage and parasite distribution in the musculature, and the extent of visible flesh myoliquefaction. Quantitative polymerase chain reaction (qPCR) data showed that K. thyrsites is unevenly distributed in the somatic musculature of the fish host, with highest density in the anterior ventral muscle sections-the belly flaps. A weak positive correlation was observed between the level of myoliquefaction and the parasite density in the fish host muscle. This relationship was also reflected by the amount and distribution of parasite developmental stages seen during histological examinations. Histological findings indicate an association between the dispersion of free myxospores and the level of myoliquefaction of the fish host muscle. Visceral organs were also found infected using qPCR, although at lower densities compared to the musculature.


Asunto(s)
Cnidarios , Enfermedades de los Peces , Myxozoa , Perciformes , Animales , Enfermedades de los Peces/parasitología , Peces , Músculo Esquelético/parasitología , Myxozoa/genética , Filogenia
10.
Microbiol Resour Announc ; 10(33): e0062421, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34410149

RESUMEN

Hafnia spp. have the potential to cause opportunistic infections in humans and animals. This announcement describes the draft genome sequence of an H2S-positive Hafnia paralvei strain that was isolated as a presumptive Salmonella sp. from a frozen cod fillet.

12.
Microorganisms ; 8(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899760

RESUMEN

Myxosporean parasites of the genus Kudoa are fish parasites of great economic importance, as some species can affect the fish fillet quality by producing macroscopic cysts or generating post mortem myoliquefaction, commonly referred to as 'soft flesh'. Kudoa mirabilis is a 'soft flesh'-inducing species originally described based on morphology in the musculature of Trichiurus lepturus from the Indian Ocean. An integrative morphological and genetic characterization of K. mirabilis from the type host caught off the coast of Tanzania is here provided. The spores were stellate with four unequal polar capsules, showing similarities to Kudoa thyrsites. For comparative and validation purpose, K. mirabilis was compared morphologically and genetically with K. thyrsites reference isolates, including new obtained samples from the type host Thyrsites atun caught in the SE Atlantic Ocean. Morphological analyses of spores revealed key diagnostic characters clearly distinguishing the two Kudoa species. Phylogenetic analyses based on SSU and LSU rRNA genes demonstrated that K. mirabilis is a distinct and valid species, representing a sister group to a K. thyrsites subclade that comprises several isolates from Japan and one single isolate from South Africa. This finding raises questions about the true diversity likely hidden in the K. thyrsites complex.

13.
Microorganisms ; 8(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751313

RESUMEN

Meromictic lakes are permanently stratified lakes that display steep gradients in salinity, oxygen and sulphur compounds tightly linked to bacterial community structure and diversity. Lake Sælenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected to the open sea and permanently stratified into two layers separated by a chemocline. The upper water layer is brackish with major input from water runoff from the surroundings. The bottom layer consists of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are reported to be ubiquitous in lake environments. They are involved in the degradation of complex carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled the water column throughout Lake Sælenvannet in 2012 and profiled the microbial community using 16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycete-related 16S rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and showed an uneven distribution throughout the water column, with the highest relative abundance of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m depths, respectively. Furthermore, seven isolates with identical 16S rRNA gene sequences were retrieved from seven different depths which varied greatly in salinity and chemical composition. These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse group of Planctomycetes in Lake Sælenvannet, with a strong potential for novel adaptations to chemical stress factors.

14.
Nat Microbiol ; 5(1): 126-140, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740763

RESUMEN

When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Bacterias/clasificación , Bacterias/citología , Bacterias/genética , División Celular , Ecosistema , Variación Genética , Genoma Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Metabolismo Secundario , Transducción de Señal
15.
Algal Res ; 30: 11-22, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29503805

RESUMEN

Microalgae could provide a sustainable alternative to fish oil as a source for the omega-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, growing microalgae on a large-scale is still more cost-intensive than fish oil production, and outdoor productivities vary greatly with reactor type, geographic location, climate conditions and microalgae species or even strains. The diatom Phaeodactylum tricornutum has been intensively investigated for its potential in large-scale production, due to its robustness and comparatively high growth rates and EPA content. Yet, most research have been performed in southern countries and with a single commercial P. tricornutum strain, while information about productivities at higher latitudes and of local strains is scarce. We examined the potential of the climate conditions in Bergen, western Norway for outdoor cultivation of P. tricornutum in flat panel photobioreactors and cultivated three different strains simultaneously, one commercial strain from Spain (Fito) and two local isolates (M28 and B58), to assess and compare their biomass and EPA productivities, and fatty acid (FA) profiles. The three strains possessed similar biomass productivities (average volumetric productivities of 0.20, 0.18, and 0.21 g L- 1 d- 1), that were lower compared to productivities reported from southern latitudes. However, EPA productivities differed between the strains (average volumetric productivities of 9.8, 5.7 and 6.9 mg L- 1 d- 1), due to differing EPA contents (average of 4.4, 3.2 and 3.1% of dry weight), and were comparable to results from Italy. The EPA content of strain Fito of 4.4% is higher than earlier reported for P. tricornutum (2.6-3.1%) and was only apparent under outdoor conditions. A principal component analysis (PCA) of the relative FA composition revealed strain-specific profiles. However, including data from laboratory experiments, revealed more significant differences between outdoor and laboratory-grown cultures than between the strains, and higher EPA contents in outdoor grown cultures.

16.
Prog Oceanogr ; 159: 13-30, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29225381

RESUMEN

Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

17.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26170047

RESUMEN

We investigated the relationship between viruses and co-occurring bacterial communities in the Sognefjord, a deep-silled fjord in Western Norway. A combination of flow cytometry and automated ribosomal intergenic spacer analysis (ARISA) was used to assess prokaryote and viral abundances, and bacterial diversity and community composition, respectively, in depth profiles and at two different sampling seasons (November and May). With one exception, bacterial diversity did not vary between samples regardless of depth or season. The virus and prokaryote abundances as well as bacterial community composition, however, varied significantly with season and depth, suggesting a link between the Sognefjord viral community and potential bacterial host community diversity. To our knowledge, these findings provide the first description of microbial communities in the unique Sognefjord ecosystem, and in addition are in agreement with the simple model version of the 'Killing the Winner' theory (KtW), which postulates that microbial community diversity is a feature that is essentially top-down controlled by viruses, while community composition is bottom-up controlled by competition for limiting growth substrates.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/genética , Estuarios , Consorcios Microbianos/genética , Virus/genética , Biodiversidad , ADN Espaciador Ribosómico/genética , Ecosistema , Noruega , Estaciones del Año , Virus/crecimiento & desarrollo
18.
PLoS One ; 9(7): e101415, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24999739

RESUMEN

Trophic mechanisms that can generate biodiversity in food webs include bottom-up (growth rate regulating) and top-down (biomass regulating) factors. The top-down control has traditionally been analyzed using the concepts of "Keystone Predation" (KP) and "Killing-the-Winner" (KtW), predominately occuring in discussions of macro- and micro-biological ecology, respectively. Here we combine the classical diamond-shaped food web structure frequently discussed in KP analyses and the KtW concept by introducing a defense strategist capable of partial defense. A formalized description of a trade-off between the defense-strategist's competitive and defensive ability is included. The analysis reveals a complex topology of the steady state solution with strong relationships between food web structure and the combination of trade-off, defense strategy and the system's nutrient content. Among the results is a difference in defense strategies corresponding to maximum biomass, production, or net growth rate of invading individuals. The analysis thus summons awareness that biomass or production, parameters typically measured in field studies to infer success of particular biota, are not directly acted upon by natural selection. Under coexistence with a competition specialist, a balance of competitive and defensive ability of the defense strategist was found to be evolutionarily stable, whereas stronger defense was optimal under increased nutrient levels in the absence of the pure competition specialist. The findings of success of different defense strategies are discussed with respect to SAR11, a highly successful bacterial clade in the pelagic ocean.


Asunto(s)
Conducta Competitiva , Cadena Alimentaria , Microbiología , Animales , Organismos Acuáticos , Biodiversidad , Biomasa , Conducta Predatoria
19.
Proc Natl Acad Sci U S A ; 111(21): 7813-8, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825894

RESUMEN

Pelagic prokaryote communities are often dominated by the SAR11 clade. The recent discovery of viruses infecting this clade led to the suggestion that such dominance could not be explained by assuming SAR11 to be a defense specialist and that the explanation therefore should be sought in its competitive abilities. The issue is complicated by the fact that prokaryotes may develop strains differing in their balance between competition and viral defense, a situation not really captured by present idealized models that operate only with virus-controlled "host groups." We here develop a theoretical framework where abundance within species emerges as the sum over virus-controlled strains and show that high abundance then is likely to occur for species able to use defense mechanisms with a low trade-off between competition and defense, rather than by extreme investment in one strategy or the other. The J-shaped activity-abundance community distribution derived from this analysis explains the high proportion low-active prokaryotes as a consequence of extreme defense as an alternative to explanations based on dormancy or death due to nutrient starvation.


Asunto(s)
Alphaproteobacteria/virología , Biodiversidad , Modelos Biológicos , Microbiología del Agua , Simulación por Computador , Dinámica Poblacional
20.
Antonie Van Leeuwenhoek ; 104(4): 569-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24018702

RESUMEN

Planctomycetes form a deep branching and distinct phylum of the domain Bacteria, and represent a fascinating group due to their unusual features such as intracellular compartmentalization and lack of peptidoglycan in their cell walls. The phylum Planctomycetes was described already in 1924, but still the diversity of this phylum represents an enigma and unexploited resource. In this study the diversity of the phylum Planctomycetes in low temperature iron-hydroxide deposits at the Mohns Ridge, a part of the Arctic Mid Ocean Ridge (AMOR), was characterised by descriptive analysis of 16S rRNA gene sequences in combination with isolation of planctomycetes strains. The 16S rRNA gene sequences were affiliated with three order within the phylum Planctomycetes namely the (i)Planctomycetales, (ii) "Candidatus Brocadiales" and (iii) Phycisphaerae in addition to sequences affiliating to hitherto unknown Planctomycetes. The majority of the sequences were affiliated with the CCM11a group (Phycisphaerae), and with the Pir4 group (Planctomycetaceae). Two strains from the order Planctomycetales were isolated. One strain (Plm2) showed high similarity to the previously isolated Planctomyces maris (99 % 16S rRNA sequence identity). The other strain (Pr1d) belonged to the Pir4 group, and showed highest identity with Rhodopirellula baltica (86 %), Blastopirellula marina (86 %) and Pirellula staleyi (85 %). Based on its physiological and biochemical properties, strain Pr1d(T) is considered to represent a new genus of the order Planctomycetales. We propose to classify the novel planctomycete in a new genus and species, Bythoypirellula goksoyri gen. nov., sp. nov., the type strain being Pr1d(T).


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Hidróxidos/química , Hierro/química , Océanos y Mares , Regiones Árticas , Bacterias/ultraestructura , Biodiversidad , Datos de Secuencia Molecular , Oceanografía , Filogenia , ARN Bacteriano , ARN Ribosómico 16S , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA