RESUMEN
Dependent on the light conditions, photosynthetic organisms switch between carbohydrate synthesis or breakdown, for which the reversibility of carbohydrate metabolism, including glycolysis, is essential. Kinetic regulation of phosphofructokinase (PFK), a key-control point in glycolysis, was studied in the cyanobacterium Synechocystis sp. PCC 6803. The two PFK iso-enzymes (PFK- A1, PFK-A2), were found to use ADP instead of ATP, and have similar kinetic characteristics, but differ in their allosteric regulation. PFK-A1 is inhibited by 3- phosphoglycerate, a product of the Calvin-Benson-Bassham cycle, while PFK-A2 is inhibited by ATP, which is provided by photosynthesis. This regulation enables cyanobacteria to switch PFK off in light, and on in darkness. ADP dependence has not been reported before for the PFK-A enzyme family, and was thought to be restricted to the PFK-B ribokinase superfamily. Phosphate donor specificity within the PFK-A family could be related to specific binding motifs in ATP-, ADP-, and PPi-dependent PFK-As. Phylogenetic analysis revealed a distribution of ADP-PFK-As in cyanobacteria and in a few alphaproteobacteria, which was confirmed in enzymatic studies.
RESUMEN
Inorganic polyphosphate, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, occurs in all three domains of life and plays a diverse and prominent role in metabolism and cellular regulation. While the polyphosphate metabolism and its physiological significance have been well studied in bacteria and eukaryotes including human, there are only few studies in archaea available so far. In Crenarchaeota including members of Sulfolobaceae , the presence of polyphosphate and degradation via exopolyphosphatase has been reported and there is some evidence for a functional role in metal ion chelation, biofilm formation, adhesion and motility, however, the nature of the crenarchaeal polyphosphate kinase is still unknown. Here we used the crenarchaeal model organism Sulfolobus acidocaldarius to study the enzymes involved in polyphosphate synthesis. The two genes annotated as thymidylate kinase ( saci_2019 and saci_2020 ), localized downstream of the exopolyphosphatase, were identified as the missing polyphosphate kinase in S. acidocaldarius ( Sa PPK3). Thymidylate kinase activity was confirmed for Saci_0893. Notably Saci_2020 showed no polyphosphate kinase activity on its own but served as regulatory subunit (rPPK3) and was able to enhance polyphosphate kinase activity of the catalytically active subunit Saci_2019 (cPPK3). Heteromeric polyphosphate kinase activity is reversible and shows a clear preference for polyP-dependent nucleotide kinase activity, i.e. polyP-dependent formation of ATP from ADP (12.4 U/mg) and to a lower extent of GDP to GTP whereas AMP does not serve as substrate. PPK activity in the direction of ATP-dependent polyP synthesis is rather low (0.25 U/mg); GTP was not used as phosphoryl donor. A combined experimental modelling approach using quantitative 31 P NMR allowed to follow the reversible enzyme reaction for both ATP and polyP synthesis. PolyP synthesis was only observed when the ATP/ADP ratio was kept high, using an ATP recycling system. In absence of such a recycling system, all incubations with polyP and PPK would reach an equilibrium state with an ATP/ADP ratio between 3 and 4, independent of the initial conditions. Structural and sequence comparisons as well as phylogenetic analysis reveal that the S. acidocaldarius PPK is a member of a new PPK family, named PPK3, within the thymidylate kinase family of the P-loop kinase superfamily, clearly separated from PPK2. Our studies show that polyP, in addition to its function as phosphate storage, has a special importance for the energy homeostasis of S. acidocaldarius and due to its reversibility serves as energy buffer under low energy charge enabling a quick response to changes in cellular demand.
RESUMEN
The enzyme cyclic di-phosphoglycerate synthetase that is involved in the production of the osmolyte cyclic 2,3-diphosphoglycerate has been studied both biochemically and structurally. Cyclic 2,3-diphosphoglycerate is found exclusively in the hyperthermophilic archaeal methanogens, such as Methanothermus fervidus, Methanopyrus kandleri, and Methanothermobacter thermoautotrophicus. Its presence increases the thermostability of archaeal proteins and protects the DNA against oxidative damage caused by hydroxyl radicals. The cyclic 2,3-diphosphoglycerate synthetase enzyme has been crystallized and its structure solved to 1.7 Šresolution by experimental phasing. It has also been crystallized in complex with its substrate 2,3 diphosphoglycerate and the co-factor ADP and this structure has been solved to 2.2 Šresolution. The enzyme structure has two domains, the core domain shares some structural similarity with other NTP-dependent enzymes. A significant proportion of the structure, including a 127 amino acid N-terminal domain, has no structural similarity to other known enzyme structures. The structure of the complex shows a large conformational change that occurs in the enzyme during catalytic turnover. The reaction involves the transfer of the γ-phosphate group from ATP to the substrate 2,3 -diphosphoglycerate and the subsequent SN2 attack to form a phosphoanhydride. This results in the production of the unusual extremolyte cyclic 2,3 -diphosphoglycerate which has important industrial applications.
RESUMEN
The crenarchaeon Sulfolobus acidocaldarius has been described to synthesize trehalose via the maltooligosyltrehalose synthase (TreY) and maltooligosyltrehalose trehalohydrolase (TreZ) pathway, and the trehalose glycosyltransferring synthase (TreT) pathway has been predicted. Deletion mutant analysis of strains with single and double deletions of ΔtreY and ΔtreT in S. acidocaldarius revealed that in addition to these two pathways, a third, novel trehalose biosynthesis pathway is operative in vivo: the trehalose-6-phosphate (T6P) synthase/T6P phosphatase (TPS/TPP) pathway. In contrast to known TPS proteins, which belong to the GT20 family, the S. acidocaldarius TPS belongs to the GT4 family, establishing a new function within this group of enzymes. This novel GT4-like TPS was found to be present mainly in the Sulfolobales The ΔtreY ΔtreT Δtps triple mutant of S. acidocaldarius, which lacks the ability to synthesize trehalose, showed no altered phenotype under standard conditions or heat stress but was unable to grow under salt stress. Accordingly, in the wild-type strain, a significant increase of intracellular trehalose formation was observed under salt stress. Quantitative real-time PCR showed a salt stress-mediated induction of all three trehalose-synthesizing pathways. This demonstrates that in Archaea, trehalose plays an essential role for growth under high-salt conditions.IMPORTANCE The metabolism and function of trehalose as a compatible solute in Archaea was not well understood. This combined genetic and enzymatic approach at the interface of microbiology, physiology, and microbial ecology gives important insights into survival under stress, adaptation to extreme environments, and the role of compatible solutes in Archaea Here, we unraveled the complexity of trehalose metabolism, and we present a comprehensive study on trehalose function in stress response in S. acidocaldarius This sheds light on the general microbiology and the fascinating metabolic repertoire of Archaea, involving many novel biocatalysts, such as glycosyltransferases, with great potential in biotechnology.
Asunto(s)
Proteínas Arqueales/genética , Estrés Salino/genética , Sulfolobus acidocaldarius/enzimología , Trehalosa/metabolismo , Proteínas Arqueales/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Redes y Vías Metabólicas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismoRESUMEN
Enzymes from (hyper)thermophiles "Thermozymes" offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability toward high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of, e.g., denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago). Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC), amorphous cellulose (AMC), xyloglucan, and chitin. The protein fraction extracted from the cells surface with Tween 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa) with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH) domains and two carbohydrate-binding modules (CBM) with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction). The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG) was able to hydrolyze various polysaccharides, with the highest activity for barley ß-glucan (ß- 1,3/1,4-glucoside), followed by that for CMC (ß-1,4-glucoside), cellooligosaccharides and galactomannan. The results reported here indicate that the modular MDG structure with multiple glycosidase and carbohydrate-binding domains not only extends the substrate spectrum, but also seems to allow the degradation of partially soluble and insoluble polymers in a processive manner. This report highlights the great potential in a multi-pronged approach consisting of a combined in situ enrichment, (comparative) genomics, and biochemistry strategy for the screening for novel enzymes of biotechnological relevance.