Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Med Phys ; 50(6): 3459-3474, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906877

RESUMEN

BACKGROUND: Approximately 500 000 patients present with critical limb ischemia (CLI) each year in the U.S., requiring revascularization to avoid amputation. While peripheral arteries can be revascularized via minimally invasive procedures, 25% of cases with chronic total occlusions are unsuccessful due to inability to route the guidewire beyond the proximal occlusion. Improvements to guidewire navigation would lead to limb salvage in a greater number of patients. PURPOSE: Integrating ultrasound imaging into the guidewire could enable direct visualization of routes for guidewire advancement. In order to navigate a robotically-steerable guidewire with integrated imaging beyond a chronic occlusion proximal to the symptomatic lesion for revascularization, acquired ultrasound images must be segmented to visualize the path for guidewire advancement. METHODS: The first approach for automated segmentation of viable paths through occlusions in peripheral arteries is demonstrated in simulations and experimentally-acquired data with a forward-viewing, robotically-steered guidewire imaging system. B-mode ultrasound images formed via synthetic aperture focusing (SAF) were segmented using a supervised approach (U-net architecture). A total of 2500 simulated images were used to train the classifier to distinguish the vessel wall and occlusion from viable paths for guidewire advancement. First, the size of the synthetic aperture resulting in the highest classification performance was determined in simulations (90 test images) and compared with traditional classifiers (global thresholding, local adaptive thresholding, and hierarchical classification). Next, classification performance as a function of the diameter of the remaining lumen (0.5 to 1.5 mm) in the partially-occluded artery was tested using both simulated (60 test images at each of 7 diameters) and experimental data sets. Experimental test data sets were acquired in four 3D-printed phantoms from human anatomy and six ex vivo porcine arteries. Accuracy of classifying the path through the artery was evaluated using microcomputed tomography of phantoms and ex vivo arteries as a ground truth for comparison. RESULTS: An aperture size of 3.8 mm resulted in the best-performing classification based on sensitivity and Jaccard index, with a significant increase in Jaccard index (p < 0.05) as aperture diameter increased. In comparing the performance of the supervised classifier and traditional classification strategies with simulated test data, sensitivity and F1 score for U-net were 0.95 ± 0.02 and 0.96 ± 0.01, respectively, compared to 0.83 ± 0.03 and 0.41 ± 0.13 for the best-performing conventional approach, hierarchical classification. In simulated test images, sensitivity (p < 0.05) and Jaccard index both increased with increasing artery diameter (p < 0.05). Classification of images acquired in artery phantoms with remaining lumen diameters ≥ 0.75 mm resulted in accuracies > 90%, while mean accuracy decreased to 82% when artery diameter decreased to 0.5 mm. For testing in ex vivo arteries, average binary accuracy, F1 score, Jaccard index, and sensitivity each exceeded 0.9. CONCLUSIONS: Segmentation of ultrasound images of partially-occluded peripheral arteries acquired with a forward-viewing, robotically-steered guidewire system was demonstrated for the first-time using representation learning. This could represent a fast, accurate approach for guiding peripheral revascularization.


Asunto(s)
Arterias , Humanos , Animales , Porcinos , Microtomografía por Rayos X , Ultrasonografía
2.
Med Phys ; 50(5): 3092-3102, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36810723

RESUMEN

BACKGROUND: Transcranial ultrasound imaging and therapy depend on the efficient transmission of acoustic energy through the skull. Multiple previous studies have concluded that a large incidence angle should be avoided during transcranial-focused ultrasound therapy to ensure transmission through the skull. Alternatively, some other studies have shown that longitudinal-to-shear wave mode conversion might improve transmission through the skull when the incidence angle is increased above the critical angle (i.e., 25° to 30°). PURPOSE: The effect of skull porosity on the transmission of ultrasound through the skull at varying incidence angles was investigated for the first time to elucidate why transmission through the skull at large angles of incidence is decreased in some cases but improved in other cases. METHODS: Transcranial ultrasound transmission at varying incidence angles (0°-50°) was investigated in phantoms and ex vivo skull samples with varying bone porosity (0% to 28.54% ± 3.36%) using both numerical and experimental methods. First, the elastic acoustic wave transmission through the skull was simulated using micro-computed tomography data of ex vivo skull samples. The trans-skull pressure was compared between skull segments having three levels of porosity, that is, low porosity (2.65% ± 0.03%), medium porosity (13.41% ± 0.12%), and high porosity (26.9%). Next, transmission through two 3D-printed resin skull phantoms (compact vs. porous phantoms) was experimentally measured to test the effect of porous microstructure alone on ultrasound transmission through flat plates. Finally, the effect of skull porosity on ultrasound transmission was investigated experimentally by comparing transmission through two ex vivo human skull segments having similar thicknesses but different porosities (13.78% ± 2.05% vs. 28.54% ± 3.36%). RESULTS: Numerical simulations indicated that an increase in transmission pressure occurs at large incidence angles for skull segments having low porosities but not for those with high porosity. In experimental studies, a similar phenomenon was observed. Specifically, for the low porosity skull sample (13.78% ± 2.05%), the normalized pressure was 0.25 when the incidence angle increased to 35°. However, for the high porosity sample (28.54% ± 3.36%), the pressure was no more than 0.1 at large incidence angles. CONCLUSIONS: These results indicate that the skull porosity has an evident effect on the transmission of ultrasound at large incidence angles. The wave mode conversion at large, oblique incidence angles could enhance the transmission of ultrasound through parts of the skull having lower porosity in the trabecular layer. However, for transcranial ultrasound therapy in the presence of highly porous trabecular bone, transmission at a normal incidence angle is preferable relative to oblique incidence angles due to the higher transmission efficiency.


Asunto(s)
Cráneo , Humanos , Porosidad , Incidencia , Microtomografía por Rayos X , Cráneo/diagnóstico por imagen , Ultrasonografía
3.
Med Phys ; 48(8): 4191-4204, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34087004

RESUMEN

PURPOSE: Cardiovascular disease (CVD) is a leading cause of death worldwide, with coronary artery disease (CAD) accounting for nearly half of all CVD deaths. The current gold standard for CAD diagnosis is catheter coronary angiography (CCA), an invasive, expensive procedure. Computed tomography coronary angiography (CTCA) represents an attractive non-invasive alternative to CCA, however, CTCA requires gated acquisition of CT data during periods of minimal cardiac motion (quiescent periods) to avoid non-diagnostic scans. Current gating methods either expose patients to high levels of radiation (retrospective gating) or lead to high rates of non-diagnostic scans (prospective gating) due to the challenge of predicting cardiac quiescence based on ECG alone. Alternatively, ultrasound (US) imaging has been demonstrated as an effective indicator of cardiac quiescence, however, ultrasound transducers produce prominent streak artifacts that disrupt CTCA scans. In this study, a proof-of-concept array transducer with improved CT-compatibility was developed for utilization in an integrated US-CTCA system. METHODS: Alternative materials were tested radiographically and acoustically to replace the radiopaque acoustic backings utilized in low frequency (1-4 MHz) cardiac US transducers. The results of this testing were used to develop alternative acoustic backings consisting of varying concentrations of aluminum oxide in an epoxy matrix via simulations. On the basis of these simulations, single element test transducers designed to operate at 2.5 MHz were fabricated, and the performance of these devices was characterized via acoustic and radiographic testing with micro-computed tomography (micro-CT). Finally, a first proof-of-concept cardiac phased array transducer was developed and its US imaging performance was evaluated. Micro-CT images of the developed US array with improved CT-compatibility were compared with those of a conventional array. RESULTS: Materials testing with micro-CT identified an acoustic backing with a measured radiopacity of 1008 HU, more than an order of magnitude lower than that of the acoustic backing (24,000 HU) typically used in cardiac transducers operating in the 1-4 MHz range. When utilized in a simulated transducer design, this acoustic backing yielded a -6-dB fractional bandwidth of 57%, similar to the 54% bandwidth of the transducer with the radiopaque acoustic backing. The developed 2.5 MHz, single element transducer based on these simulations exhibited a fractional bandwidth of 51% and signal-to-noise ratio (SNR) of 14.7 dB. Finally, the array transducer developed with the acoustic backing having decreased radiopacity exhibited a 56% fractional bandwidth and 10.4 dB single channel SNR, with penetration depth >10 cm in phantom and in vivo imaging using the full array. CONCLUSIONS: The first attempt at developing a CT-compatible ultrasound transducer is described. The developed CT-compatible transducer exhibits improved radiographic compatibility relative to conventional cardiac array transducers with similar SNR, bandwidth, and penetration depth for US imaging, according to phantom and in vivo cardiac imaging. A CT-compatible US transducer might be used to identify cardiac quiescence and prospectively gate CTCA acquisition, reducing challenges associated with current gating approaches, specifically relatively high rates of non-diagnostic scans for prospective ECG gating and high radiation dose for retrospective gating.


Asunto(s)
Transductores , Angiografía Coronaria , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA