Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
EBioMedicine ; 105: 105213, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38908098

RESUMEN

BACKGROUND: COVID-19 clinical course is highly variable and secondary infections contribute to COVID-19 complexity. Early detection of secondary infections is clinically relevant for patient outcome. Procalcitonin (PCT) and C-reactive protein (CRP) are the most used biomarkers of infections. Pentraxin 3 (PTX3) is an acute phase protein with promising performance as early biomarker in infections. In patients with COVID-19, PTX3 plasma concentrations at hospital admission are independent predictor of poor outcome. In this study, we assessed whether PTX3 contributes to early identification of co-infections during the course of COVID-19. METHODS: We analyzed PTX3 levels in patients affected by COVID-19 with (n = 101) or without (n = 179) community or hospital-acquired fungal or bacterial secondary infections (CAIs or HAIs). FINDINGS: PTX3 plasma concentrations at diagnosis of CAI or HAI were significantly higher than those in patients without secondary infections. Compared to PCT and CRP, the increase of PTX3 plasma levels was associated with the highest hazard ratio for CAIs and HAIs (aHR 11.68 and 24.90). In multivariable Cox regression analysis, PTX3 was also the most significant predictor of 28-days mortality or intensive care unit admission of patients with potential co-infections, faring more pronounced than CRP and PCT. INTERPRETATION: PTX3 is a promising predictive biomarker for early identification and risk stratification of patients with COVID-19 and co-infections. FUNDING: Dolce & Gabbana fashion house donation; Ministero della Salute for COVID-19; EU funding within the MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT) and MUR PNRR Italian network of excellence for advanced diagnosis (Project no. PNC-E3-2022-23683266 PNC-HLS-DA); EU MSCA (project CORVOS 860044).


Asunto(s)
Biomarcadores , Proteína C-Reactiva , COVID-19 , Coinfección , SARS-CoV-2 , Componente Amiloide P Sérico , Humanos , COVID-19/sangre , COVID-19/diagnóstico , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Componente Amiloide P Sérico/metabolismo , Biomarcadores/sangre , Masculino , Femenino , Anciano , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Infecciones Bacterianas/sangre , Infecciones Bacterianas/diagnóstico , Polipéptido alfa Relacionado con Calcitonina/sangre , Pronóstico , Micosis/sangre , Micosis/diagnóstico , Anciano de 80 o más Años
2.
Front Immunol ; 13: 979232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189302

RESUMEN

Background: Early prognostic stratification of patients with sepsis is a difficult clinical challenge. Aim of this study was to evaluate novel molecules in association with clinical parameters as predictors of 90-days mortality in patients admitted with sepsis at Humanitas Research Hospital. Methods: Plasma samples were collected from 178 patients, diagnosed based on Sepsis-3 criteria, at admission to the Emergency Department and after 5 days of hospitalization. Levels of pentraxin 3 (PTX3), soluble IL-1 type 2 receptor (sIL-1R2), and of a panel of pro- and anti-inflammatory cytokines were measured by ELISA. Cox proportional-hazard models were used to evaluate predictors of 90-days mortality. Results: Circulating levels of PTX3, sIL-1R2, IL-1ß, IL-6, IL-8, IL-10, IL-18, IL-1ra, TNF-α increased significantly in sepsis patients on admission, with the highest levels measured in shock patients, and correlated with SOFA score (PTX3: r=0.44, p<0.0001; sIL-1R2: r=0.35, p<0.0001), as well as with 90-days mortality. After 5 days of hospitalization, PTX3 and cytokines, but not sIL-1R2 levels, decreased significantly, in parallel with a general improvement of clinical parameters. The combination of age, blood urea nitrogen, PTX3, IL-6 and IL-18, defined a prognostic index predicting 90-days mortality in Sepsis-3 patients and showing better apparent discrimination capacity than the SOFA score (AUC=0.863, 95% CI: 0.780-0.945 vs. AUC=0.727, 95% CI: 0.613-0.840; p=0.021 respectively). Conclusion: These data suggest that a prognostic index based on selected cytokines, PTX3 and clinical parameters, and hence easily adoptable in clinical practice, performs in predicting 90-days mortality better than SOFA. An independent validation is required.


Asunto(s)
Interleucina-10 , Sepsis , Biomarcadores , Proteína C-Reactiva , Citocinas , Humanos , Recién Nacido , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1 , Interleucina-18 , Interleucina-6 , Interleucina-8 , Pronóstico , Curva ROC , Componente Amiloide P Sérico , Factor de Necrosis Tumoral alfa
4.
Nat Immunol ; 23(2): 275-286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102342

RESUMEN

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Asunto(s)
COVID-19/inmunología , Inmunidad Humoral , Receptores de Reconocimiento de Patrones/inmunología , SARS-CoV-2/inmunología , Animales , Proteína C-Reactiva/inmunología , Proteína C-Reactiva/metabolismo , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Chlorocebus aethiops , Activación de Complemento , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Femenino , Glicosilación , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Masculino , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/inmunología , Lectina de Unión a Manosa/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Polimorfismo Genético , Unión Proteica , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Componente Amiloide P Sérico/inmunología , Componente Amiloide P Sérico/metabolismo , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
5.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054869

RESUMEN

The retinal pigmented epithelium (RPE) plays a pivotal role in retinal homeostasis. It is therefore an interesting target to fill the unmet medical need of different retinal diseases, including age-related macular degeneration and Stargardt disease. RPE replacement therapy may use different cellular sources: induced pluripotent stem cells or embryonic stem cells. Cells can be transferred as suspension on a patch with different surgical approaches. Results are promising although based on very limited samples. In this review, we summarize the current progress of RPE replacement and provide a comparative assessment of different published approaches which may become standard of care in the future.


Asunto(s)
Oftalmólogos , Epitelio Pigmentado de la Retina/patología , Investigación Biomédica Traslacional , Ensayos Clínicos como Asunto , Humanos , Degeneración Macular/terapia , Enfermedad de Stargardt/terapia
6.
J Leukoc Biol ; 111(4): 817-836, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346525

RESUMEN

The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIß), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.


Asunto(s)
COVID-19 , Proteínas de la Membrana , Antígenos CD20 , Familia , Humanos , Proteínas de la Membrana/genética , Monocitos/metabolismo
7.
Front Immunol ; 12: 666198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093560

RESUMEN

Klebsiella pneumoniae is a common pathogen in human sepsis. The emergence of multidrug-resistant K. pneumoniae strains represents a major clinical challenge in nosocomial and community acquired infections. The long pentraxin PTX3, a key component of humoral innate immunity, is involved in resistance to selected pathogens by promoting opsonophagocytosis. We investigated the relevance of PTX3 in innate immunity against K. pneumoniae infections using Ptx3-/- mice and mouse models of severe K. pneumoniae infections. Local and systemic PTX3 expression was induced following K. pneumoniae pulmonary infection, in association with the up-regulation of TNF-α and IL-1ß. PTX3 deficiency in mice was associated with higher bacterial burden and mortality, release of pro-inflammatory cytokines as well as IL-10 in the lung and systemically. The analysis of the mechanisms responsible of PTX3-dependent control of K. pneumoniae infection revealed that PTX3 did not interact with K. pneumoniae, or promote opsonophagocytosis. The comparison of susceptibility of wild-type, Ptx3-/-, C3-/- and Ptx3-/- /C3-/- mice to the infection showed that PTX3 acted in a complement-independent manner. Lung histopathological analysis showed more severe lesions in Ptx3-/- mice with fibrinosuppurative, necrotizing and haemorrhagic bronchopneumonia, associated with increased fibrin deposition in the lung and circulating fibrinogen consumption. These findings indicate that PTX3 contributes to the control of K. pneumoniae infection by modulating inflammatory responses and tissue damage. Thus, this study emphasizes the relevance of the role of PTX3 as regulator of inflammation and orchestrator of tissue repair in innate responses to infections.


Asunto(s)
Proteína C-Reactiva/inmunología , Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae/patogenicidad , Componente Amiloide P Sérico/inmunología , Animales , Carga Bacteriana/inmunología , Proteína C-Reactiva/deficiencia , Proteína C-Reactiva/metabolismo , Citocinas/metabolismo , Fibrina/metabolismo , Fibrinógeno/metabolismo , Inmunidad Innata , Inflamación , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/patología , Klebsiella pneumoniae/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/microbiología , Sepsis/patología , Componente Amiloide P Sérico/deficiencia , Componente Amiloide P Sérico/metabolismo , Células del Estroma/metabolismo
8.
Front Pharmacol ; 12: 811344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069222

RESUMEN

Age related macular degeneration (AMD) and diabetic retinopathy (DR) are multifactorial, neurodegenerative and inflammatory diseases of the eye primarily involving cellular and molecular components of the outer and inner blood-retina barriers (BRB), respectively. Largely contributed by genetic factors, particularly polymorphisms in complement genes, AMD is a paradigm of retinal immune dysregulation. DR, a major complication of diabetes mellitus, typically presents with increased vascular permeability and occlusion of the retinal vasculature that leads, in the proliferative form of the disease, to neovascularization, a pathogenic trait shared with advanced AMD. In spite of distinct etiology and clinical manifestations, both pathologies share common drivers, such as chronic inflammation, either of immune (in AMD) or metabolic (in DR) origin, which initiates and propagates degeneration of the neural retina, yet the underlying mechanisms are still unclear. As a soluble pattern recognition molecule with complement regulatory functions and a marker of vascular damage, long pentraxin 3 (PTX3) is emerging as a novel player in ocular homeostasis and a potential pharmacological target in neurodegenerative disorders of the retina. Physiologically present in the human eye and induced in inflammatory conditions, this protein is strategically positioned at the BRB interface, where it acts as a "molecular trap" for complement, and modulates inflammation both in homeostatic and pathological conditions. Here, we discuss current viewpoints on PTX3 and retinal diseases, with a focus on AMD and DR, the roles therein proposed for this pentraxin, and their implications for the development of new therapeutic strategies.

9.
Front Pharmacol ; 11: 591908, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324220

RESUMEN

Dysregulation of the complement system is central to age-related macular degeneration (AMD), the leading cause of blindness in the developed world. Most of the genetic variation associated with AMD resides in complement genes, with the greatest risk associated with polymorphisms in the complement factor H (CFH) gene; factor H (FH) is the major inhibitor of the alternative pathway (AP) of complement that specifically targets C3b and the AP C3 convertase. Long pentraxin 3 (PTX3) is a soluble pattern recognition molecule that has been proposed to inhibit AP activation via recruitment of FH. Although present in the human retina, if and how PTX3 plays a role in AMD is still unclear. In this work we demonstrated the presence of PTX3 in the human vitreous and studied the PTX3-FH-C3b crosstalk and its effects on complement activation in a model of retinal pigment epithelium (RPE). RPE cells cultured in inflammatory AMD-like conditions overexpressed the PTX3 protein, and up-regulated AP activating genes. PTX3 bound RPE cells in a physiological setting, however this interaction was reduced in inflammatory conditions, whereby PTX3 had no complement-inhibiting activity on inflamed RPE. However, on non-cellular surfaces, PTX3 formed a stable ternary complex with FH and C3b that acted as a "hot spot" for complement inhibition. Our findings suggest a protective role for PTX3 in response to complement dysregulation in AMD and point to a novel mechanism of complement regulation by this pentraxin with potential implications in pathology and pharmacology of AMD.

10.
Nat Immunol ; 20(8): 1012-1022, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31263276

RESUMEN

The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the ß-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.


Asunto(s)
Células Asesinas Naturales/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Metástasis de la Neoplasia/inmunología , Neoplasias/inmunología , Animales , Diferenciación Celular/inmunología , Linaje de la Célula , Dexametasona/farmacología , Humanos , Interleucina-4/metabolismo , Activación de Linfocitos/inmunología , Activación de Macrófagos/inmunología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Metástasis de la Neoplasia/prevención & control , Neoplasias/patología
11.
Stem Cells ; 37(7): 973-987, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30942926

RESUMEN

Mesenchymal stem cells (MSCs) are well established to have promising therapeutic properties. TNF-stimulated gene-6 (TSG-6), a potent tissue-protective and anti-inflammatory factor, has been demonstrated to be responsible for a significant part of the tissue-protecting properties mediated by MSCs. Nevertheless, current knowledge about the biological function of TSG-6 in MSCs is limited. Here, we demonstrated that TSG-6 is a crucial factor that influences many functional properties of MSCs. The transcriptomic sequencing analysis of wild-type (WT) and TSG-6-/- -MSCs shows that the loss of TSG-6 expression leads to the perturbation of several transcription factors, cytokines, and other key biological pathways. TSG-6-/- -MSCs appeared morphologically different with dissimilar cytoskeleton organization, significantly reduced size of extracellular vesicles, decreased cell proliferative rate, and loss of differentiation abilities compared with the WT cells. These cellular effects may be due to TSG-6-mediated changes in the extracellular matrix (ECM) environment. The supplementation of ECM with exogenous TSG-6, in fact, rescued cell proliferation and changes in morphology. Importantly, TSG-6-deficient MSCs displayed an increased capacity to release interleukin-6 conferring pro-inflammatory and pro-tumorigenic properties to the MSCs. Overall, our data provide strong evidence that TSG-6 is crucial for the maintenance of stemness and other biological properties of murine MSCs.


Asunto(s)
Moléculas de Adhesión Celular/genética , Transformación Celular Neoplásica/genética , Interleucina-6/genética , Células Madre Mesenquimatosas/metabolismo , Transcriptoma , Animales , Comunicación Autocrina/genética , Moléculas de Adhesión Celular/deficiencia , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Citocinas/genética , Citocinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Interleucina-6/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Front Immunol ; 10: 712, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019517

RESUMEN

The innate immune system comprises a cellular and a humoral arm. Humoral pattern recognition molecules include complement components, collectins, ficolins, and pentraxins. These molecules are involved in innate immune responses by recognizing microbial moieties and damaged tissues, activating complement, exerting opsonic activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing defense against infectious agents, plays several functions in tissue repair and regulation of cancer-related inflammation. Characterization of the PTX3 molecular structure and biochemical properties, and insights into its interactome and multiple roles in tissue damage and remodeling support the view that microbial and matrix recognition are evolutionarily conserved functions of humoral innate immunity molecules.


Asunto(s)
Proteína C-Reactiva/inmunología , Proteínas del Tejido Nervioso/inmunología , Componente Amiloide P Sérico/inmunología , Animales , Biomarcadores de Tumor/inmunología , Proteína C-Reactiva/química , Proteína C-Reactiva/genética , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Ratones , Modelos Inmunológicos , Estructura Molecular , Neoplasias/etiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Componente Amiloide P Sérico/química , Componente Amiloide P Sérico/genética , Cicatrización de Heridas/inmunología
13.
Front Immunol ; 10: 461, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923526

RESUMEN

Pentraxins and complement defense collagens are soluble recognition proteins that sense pathogens and altered-self elements, and trigger immune responses including complement activation. PTX3 has been shown to interact with the globular recognition domains (gC1q) of the C1q protein of the classical complement pathway, thereby modulating complement activity. The C1q-PTX3 interaction has been characterized previously by site-specific mutagenesis using individual gC1q domains of each of the three C1q chains. The present study is aimed at revisiting this knowledge taking advantage of full-length recombinant C1q. Four mutations targeting exposed amino acid residues in the gC1q domain of each of the C1q chains (LysA200Asp-LysA201Asp, ArgB108Asp-ArgB109Glu, TyrB175Leu, and LysC170Glu) were introduced in recombinant C1q and the interaction properties of the mutants were analyzed using surface plasmon resonance. All C1q mutants retained binding to C1r and C1s proteases and mannose-binding lectin-associated serine proteases, indicating that the mutations did not affect the function of the collagen-like regions of C1q. The effect of these mutations on the interaction of C1q with PTX3 and IgM, and both the PTX3- and IgM-mediated activation of the classical complement pathway were investigated. The LysA200Asp-LysA201Asp and LysC170Glu mutants retained partial interaction with PTX3 and IgM, however they triggered efficient complement activation. In contrast, the ArgB108Asp-ArgB109Glu mutation abolished C1q binding to PTX3 and IgM, and significantly decreased complement activation. The TyrB175Leu mutant exhibited decreased PTX3- and IgM-dependent complement activation. Therefore, we provided evidence that, in the context of the full length C1q protein, a key contribution to the interaction with both PTX3 and IgM is given by the B chain Arg residues that line the side of the gC1q heterotrimer, with a minor participation of a Lys residue located at the apex of gC1q. Furthermore, we generated recombinant forms of the human PTX3 protein bearing either D or A at position 48, a polymorphic site of clinical relevance in a number of infections, and observed that both allelic variants equally recognized C1q.


Asunto(s)
Proteína C-Reactiva/química , Complemento C1q/química , Inmunoglobulina M/química , Mutación Missense , Componente Amiloide P Sérico/química , Sustitución de Aminoácidos , Animales , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Células CHO , Complemento C1q/genética , Complemento C1q/inmunología , Cricetulus , Humanos , Inmunoglobulina M/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/inmunología
14.
PLoS One ; 12(8): e0182589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28787011

RESUMEN

Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.


Asunto(s)
Antipsicóticos/farmacología , Clorpromazina/farmacología , Proteínas Priónicas/metabolismo , Antipsicóticos/metabolismo , Línea Celular , Clorpromazina/metabolismo , Dinaminas/antagonistas & inhibidores , Humanos , Ligandos , Mutación , Proteínas Priónicas/genética , Transporte de Proteínas/efectos de los fármacos
15.
J Alzheimers Dis ; 57(3): 857-871, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28282805

RESUMEN

The 24-residue peptide humanin (HN) has been proposed as a peptide-based inhibitor able to interact directly with amyloid-ß (Aß) oligomers and interfere with the formation and/or biological properties of toxic Aß species. When administered exogenously, HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aß-induced toxicity. Whether these peptides interact directly with Aß, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aß42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aß toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aß42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aß42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aß levels, likely the consequence of the HNG-induced overexpression of the Aß-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Parálisis/inducido químicamente , Parálisis/tratamiento farmacológico , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/ultraestructura , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dicroismo Circular/métodos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/farmacología , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Neprilisina/genética , Neprilisina/metabolismo , Parálisis/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/ultraestructura , Resonancia por Plasmón de Superficie
16.
Sci Rep ; 7: 41734, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134307

RESUMEN

Fingolimod, also known as FTY720, is an analogue of the sphingolipid sphingosine, which has been proved to be neuroprotective in rodent models of Alzheimer's disease (AD). Several cellular and molecular targets underlying the neuroprotective effects of FTY720 have been recently identified. However, whether the drug directly protects neurons from toxicity of amyloid-beta (Aß) still remains poorly defined. Using a combination of biochemical assays, live imaging and electrophysiology we demonstrate that FTY720 induces a rapid increase in GLUN2A-containing neuroprotective NMDARs on the surface of dendritic spines in cultured hippocampal neurons. In addition, the drug mobilizes extrasynaptic GLUN2B-containing NMDARs, which are coupled to cell death, to the synapses. Altered ratio of synaptic/extrasynaptic NMDARs decreases calcium responsiveness of neurons to neurotoxic soluble Aß 1-42 and renders neurons resistant to early alteration of calcium homeostasis. The fast defensive response of FTY720 occurs through a Sphingosine-1-phosphate receptor (S1P-R) -dependent mechanism, as it is lost in the presence of S1P-R1 and S1P-R3 antagonists. We propose that rapid synaptic relocation of NMDARs might have direct impact on amelioration of cognitive performance in transgenic APPswe/PS1dE9 AD mice upon sub-chronic treatment with FTY720.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Clorhidrato de Fingolimod/farmacología , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/farmacología , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Células Piramidales/efectos de los fármacos
17.
J Cereb Blood Flow Metab ; 37(3): 938-950, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27165013

RESUMEN

Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin-/-) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin-/- mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Dendrímeros/uso terapéutico , Glicósidos/uso terapéutico , Lectina de Unión a Manosa/antagonistas & inhibidores , Animales , Dendrímeros/administración & dosificación , Modelos Animales de Enfermedad , Glicósidos/administración & dosificación , Ligandos , Masculino , Manosa/metabolismo , Lectina de Unión a Manosa/genética , Ratones , Ratones Noqueados , Neurogénesis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Corteza Sensoriomotora/efectos de los fármacos
18.
J Alzheimers Dis ; 53(4): 1485-97, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27392850

RESUMEN

15B3 is a monoclonal IgM antibody that selectively detects pathological aggregates of the prion protein (PrP). We report the unexpected finding that 15B3 also recognizes oligomeric but not monomeric forms of amyloid-ß (Aß)42, an aggregating peptide implicated in the pathogenesis of Alzheimer's disease (AD). The 15B3 antibody: i) inhibits the binding of synthetic Aß42 oligomers to recombinant PrP and neuronal membranes; ii) prevents oligomer-induced membrane depolarization; iii) antagonizes the inhibitory effects of oligomers on the physiological pharyngeal contractions of the nematode Caenorhabditis elegans; and iv) counteracts the memory deficits induced by intracerebroventricular injection of Aß42 oligomers in mice. Thus this antibody binds to pathologically relevant forms of Aß, and offers a potential research, diagnostic, and therapeutic tool for AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Anticuerpos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Síndromes de Neurotoxicidad/terapia , Fragmentos de Péptidos/toxicidad , Priones/inmunología , Animales , Caenorhabditis elegans , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Células HEK293 , Hipocampo/citología , Humanos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/etiología , Priones/metabolismo , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
J Biomol Screen ; 21(7): 749-57, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26969323

RESUMEN

Mannose-binding lectin (MBL) is a circulating protein that acts as a soluble pattern recognition molecule of the innate immunity. It binds to carbohydrate patterns on the surface of pathogens or of altered self-cells, with activation of the lectin pathway of the complement system. Recent evidence indicates that MBL contributes to the pathophysiology of ischemia-reperfusion injury and other conditions. Thus, MBL inhibitors offer promising therapeutic strategies, since they prevent the interaction of MBL with its target sugar arrays. We developed and characterized a novel assay based on surface plasmon resonance for in vitro screening of these compounds, which may be useful before the more expensive and time-consuming in vivo studies. The assay measures the inhibitor's ability to interfere with the binding of murine MBL-A or MBL-C, or of human recombinant MBL, to mannose residues immobilized on the sensor chip surface. We have applied the assay to measure the IC50 of synthetic glycodendrimers, two of them with neuroprotective properties in animal models of MBL-mediated injuries.


Asunto(s)
Carbohidratos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Lectina de Unión a Manosa/antagonistas & inhibidores , Resonancia por Plasmón de Superficie/métodos , Animales , Carbohidratos/química , Dendrímeros/química , Dendrímeros/uso terapéutico , Humanos , Inmunidad Innata/genética , Lectina de Unión a Manosa/química , Ratones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
20.
Sci Rep ; 6: 23180, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976106

RESUMEN

Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrP(Sc) is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrP(C) may provide an opportunity to overcome these problems. PrP(C) ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrP(C), and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrP(C)-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrP(C)-dependent synaptotoxicity of amyloid-ß (Aß) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrP(C) may produce a dual effect of blocking prion replication and inhibiting PrP(C)-mediated toxicity.


Asunto(s)
Metaloporfirinas/química , Proteínas PrPC/metabolismo , Proteínas Priónicas/antagonistas & inhibidores , Tetrapirroles/química , Péptidos beta-Amiloides/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Células HEK293 , Humanos , Metaloporfirinas/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Porfirinas , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas Priónicas/química , Unión Proteica , Proteínas Recombinantes/metabolismo , Tetrapirroles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA