Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Microbiol Spectr ; 12(3): e0372323, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315026

RESUMEN

The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE: The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.


Asunto(s)
Mycobacterium tuberculosis , Oxidorreductasas , Tuberculosis , Humanos , Antituberculosos/química , Ensayos Analíticos de Alto Rendimiento , Diseño de Fármacos , Tuberculosis/tratamiento farmacológico
2.
Sci Rep ; 13(1): 8841, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258554

RESUMEN

Intermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12). The rod is flanked by flexible terminal head and tail domains. At present, the molecular architecture of mature IFs is only poorly known, limiting our capacity to rationalize the effect of numerous disease-related mutations found in IF proteins. Here we addressed the molecular structure of soluble vimentin tetramers which are formed by two antiparallel, staggered dimers with coil1B domains aligned (A11 tetramers). By examining a series of progressive truncations, we show that the presence of the coil1A domain is essential for the tetramer formation. In addition, we employed a novel chemical cross-linking pipeline including isotope labelling to identify intra- and interdimeric cross-links within the tetramer. We conclude that the tetramer is synergistically stabilized by the interactions of the aligned coil1B domains, the interactions between coil1A and the N-terminal portion of coil2, and the electrostatic attraction between the oppositely charged head and rod domains. Our cross-linking data indicate that, starting with a straight A11 tetramer, flexibility of linkers L1 and L12 enables 'backfolding' of both the coil1A and coil2 domains onto the tetrameric core formed by the coil1B domains. Through additional small-angle X-ray scattering experiments we show that the elongated A11 tetramers dominate in low ionic strength solutions, while there is also a significant structural flexibility especially in the terminal domains.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Animales , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Estructura Molecular , Citoesqueleto/metabolismo , Secuencia de Aminoácidos
3.
Antiviral Res ; 209: 105508, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581049

RESUMEN

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Asunto(s)
COVID-19 , Perileno , Humanos , Antivirales/farmacología , Antivirales/química , Uracilo/farmacología , Perileno/farmacología , SARS-CoV-2
4.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499418

RESUMEN

Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.


Asunto(s)
Ligasas , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Glicopéptidos/química , Inositol/metabolismo , Ligasas/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Sulfonamidas/farmacología
5.
Protein Sci ; 31(12): e4505, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36369679

RESUMEN

Intermediate filaments (IFs) form an essential part of the metazoan cytoskeleton. Despite a long history of research, a proper understanding of their molecular architecture and assembly process is still lacking. IFs self-assemble from elongated dimers, which are defined by their central "rod" domain. This domain forms an α-helical coiled coil consisting of three segments called coil1A, coil1B, and coil2. It has been hypothesized that the structural plasticity of the dimer, including the unraveling of some coiled-coil regions, is essential for the assembly process. To systematically explore this possibility, we have studied six 50-residue fragments covering the entire rod domain of human vimentin, a model IF protein. After creating in silico models of these fragments, their evaluation using molecular dynamics was performed. Large differences were seen across the six fragments with respect to their structural variability during a 100 ns simulation. Next, the fragments were prepared recombinantly, whereby their correct dimerization was promoted by adding short N- or C-terminal capping motifs. The capped fragments were subjected to circular dichroism measurements at varying temperatures. The obtained melting temperatures reveal the relative stabilities of individual fragments, which correlate well with in silico results. We show that the least stable regions of vimentin rod are coil1A and the first third of coil2, while the structures of coil1B and the rest of coil2 are significantly more robust. These observations are in line with the data obtained using other experimental approaches, and contribute to a better understanding of the molecular mechanisms driving IF assembly.


Asunto(s)
Filamentos Intermedios , Simulación de Dinámica Molecular , Humanos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/análisis , Vimentina/química
6.
RSC Chem Biol ; 3(8): 1013-1027, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35974998

RESUMEN

Polyomaviruses are a family of ubiquitous double-stranded DNA viruses many of which are human pathogens. These include BK polyomavirus which causes severe urinary tract infection in immunocompromised patients and Merkel cell polyomavirus associated with aggressive cancers. The small genome of polyomaviruses lacks conventional drug targets, and no specific drugs are available at present. Here we focus on the main structural protein VP1 of BK polyomavirus which is responsible for icosahedral capsid formation. To provide a foundation towards rational drug design, we crystallized truncated VP1 pentamers and subjected them to a high-throughput screening for binding drug-like fragments through a direct X-ray analysis. To enable a highly performant screening, rigorous optimization of the crystallographic pipeline and processing with the latest generation PanDDA2 software were necessary. As a result, a total of 144 binding hits were established. Importantly, the hits are well clustered in six surface pockets. Three pockets are located on the outside of the pentamer and map on the regions where the 'invading' C-terminal arm of another pentamer is attached upon capsid assembly. Another set of three pockets is situated within the wide pore along the five-fold axis of the VP1 pentamer. These pockets are situated at the interaction interface with the minor capsid protein VP2 which is indispensable for normal functioning of the virus. Here we systematically analyse the three outside pockets which are highly conserved across various polyomaviruses, while point mutations in these pockets are detrimental for viral replication. We show that one of the pockets can accommodate antipsychotic drug trifluoperazine. For each pocket, we derive pharmacophore features which enable the design of small molecules preventing the interaction between VP1 pentamers and therefore inhibiting capsid assembly. Our data lay a foundation towards a rational development of first-in-class drugs targeting polyomavirus capsid.

7.
Commun Biol ; 5(1): 883, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038645

RESUMEN

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Asunto(s)
Leucina-ARNt Ligasa , ARN de Transferencia de Leucina , Catálisis , Dominio Catalítico , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , Péptidos , ARN de Transferencia de Leucina/metabolismo
8.
Cells ; 10(9)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34572105

RESUMEN

Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.


Asunto(s)
Fenómenos Fisiológicos Celulares , Citoesqueleto/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Animales , Citoesqueleto/química , Humanos
9.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360555

RESUMEN

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Bioensayo/métodos , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazinamida/química , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica
10.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540702

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1), a key regulator of the fibrinolytic system, is the main physiological inhibitor of plasminogen activators. By interacting with matrix components, including vitronectin (Vn), PAI-1 plays a regulatory role in tissue remodeling, cell migration, and intracellular signaling. Emerging evidence points to a role for PAI-1 in various pathological conditions, including cardiovascular diseases, cancer, and fibrosis. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1-related pathologies. A class of small molecule inhibitors including TM5441 and TM5484, designed to bind the cleft in the central ß-sheet A of PAI-1, showed to be potent PAI-1 inhibitors in vivo. However, their binding site has not yet been confirmed. Here, we report two X-ray crystallographic structures of PAI-1 in complex with TM5484. The structures revealed a binding site at the flexible joint region, which is distinct from the presumed binding site. Based on the structural analysis and biochemical data we propose a mechanism for the observed dose-dependent two-step mechanism of PAI-1 inhibition. By binding to the flexible joint region in PAI-1, TM5484 might restrict the structural flexibility of this region, thereby inducing a substrate form of PAI-1 followed by a conversion to an inert form.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Inhibidor 1 de Activador Plasminogénico/química , Conformación Proteica , Relación Estructura-Actividad
11.
Eur J Med Chem ; 211: 113021, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248851

RESUMEN

Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNALeu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, Kiapp values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Inhibidores Enzimáticos/farmacología , Leucina-ARNt Ligasa/antagonistas & inhibidores , Alcoholes del Azúcar/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Leucina-ARNt Ligasa/aislamiento & purificación , Leucina-ARNt Ligasa/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Neisseria gonorrhoeae/enzimología , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Alcoholes del Azúcar/síntesis química , Alcoholes del Azúcar/química
12.
Molecules ; 25(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081246

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Asunto(s)
Aminoacil-ARNt Sintetasas/ultraestructura , Bencimidazoles/química , Inhibidores Enzimáticos/síntesis química , Ribonucleósidos/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/química , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/patogenicidad , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad
13.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824134

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidor 1 de Activador Plasminogénico/química , Anticuerpos de Dominio Único/química , Sitios de Unión , Humanos , Inhibidor 1 de Activador Plasminogénico/inmunología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Unión Proteica , Estabilidad Proteica , Anticuerpos de Dominio Único/inmunología
14.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773091

RESUMEN

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Ferricromo/análogos & derivados , Serina-ARNt Ligasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ferricromo/síntesis química , Ferricromo/química , Ferricromo/metabolismo , Ligandos , Simulación de Dinámica Molecular , Serina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología
15.
Bioorg Med Chem ; 28(15): 115580, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631562

RESUMEN

Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168). Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3'- and 4'- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Isoleucina-ARNt Ligasa/antagonistas & inhibidores , Ácidos Sulfónicos/farmacología , Triazoles/farmacología , Tirosina-ARNt Ligasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Candida/efectos de los fármacos , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica , Staphylococcus aureus/efectos de los fármacos , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/metabolismo , Thermus thermophilus/enzimología , Triazoles/síntesis química , Triazoles/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
16.
Cells ; 9(7)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645958

RESUMEN

The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.


Asunto(s)
Lamina Tipo A/química , Cristalografía por Rayos X , Humanos , Espectrometría de Masas
17.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549212

RESUMEN

Ubiquitously expressed human small heat shock proteins (sHsps) HspB1, HspB5, HspB6 and HspB8 contain a conserved motif (S/G)RLFD in their N-terminal domain. For each of them, we prepared mutants with a replacement of the conserved R by A (R/A mutants) and a complete deletion of the pentapeptide (Δ mutants) and analyzed their heterooligomerization with other wild-type (WT) human sHsps. We found that WT HspB1 and HspB5 formed heterooligomers with HspB6 only upon heating. In contrast, both HspB1 mutants interacted with WT HspB6 even at low temperature. HspB1/HspB6 heterooligomers revealed a broad size distribution with equimolar ratio suggestive of heterodimers as building blocks, while HspB5/HspB6 heterooligomers had an approximate 2:1 ratio. In contrast, R/A or Δ mutants of HspB6, when mixed with either HspB1 or HspB5, resulted in heterooligomers with a highly variable molar ratio and a decreased HspB6 incorporation. No heterooligomerization of HspB8 or its mutants with either HspB1 or HspB5 could be detected. Finally, R/A or Δ mutations had no effect on heterooligomerization of HspB1 and HspB5 as analyzed by ion exchange chromatography. We conclude that the conserved N-terminal motif plays an important role in heterooligomer formation, as especially pronounced in HspB6 lacking the C-terminal IXI motif.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Secuencias de Aminoácidos , Cromatografía en Gel , Proteínas de Choque Térmico Pequeñas/genética , Humanos , Mutación , Dominios Proteicos , Multimerización de Proteína
18.
Exp Eye Res ; 197: 108091, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32533979

RESUMEN

Physico-chemical properties of three cataract-associated missense mutants of αB-crystallin (HspB5) (R11H, P20S, R56W) were analyzed. The oligomers formed by the R11H mutant were smaller, whereas the oligomers of the P20S and R56W mutants were larger than those of the wild-type protein. The P20S mutant possessed lower thermal stability than the wild-type HspB5 or two other HspB5 mutants. All HspB5 mutants were able to form heterooligomeric complexes with αA-crystallin (HspB4), a genuine component of eye lens. However, the P20S and R56W mutants were less effective in the formation of these complexes and properties of heterooligomeric complexes formed by these mutants and HspB4 and analyzed by ion-exchange chromatography were different from those formed by the wild-type HspB5 and HspB4. All HspB5 variants also heterooligomerized with another partner protein, HspB6. Specifically for the P20S mutant forming two distinct sizes of homooligomers, only the smaller homooligomer population was able to interact with HspB6. P20S and R56W mutants possessed lower chaperone-like activity than the wild-type HspB5 when UV-irradiated ßL-crystallin was used as a model substrate. Importantly, all three mutations are localized in three earlier postulated short α-helical regions present in the N-terminal domain of αB-crystallin. These observations suggest an important structural and functional role of these regions. Correspondingly, therein localized mutations ultimately result in clinically relevant cataracts.


Asunto(s)
Catarata/genética , ADN/genética , Mutación , Cadena B de alfa-Cristalina/genética , Catarata/metabolismo , Análisis Mutacional de ADN , Humanos , Cadena B de alfa-Cristalina/metabolismo
19.
Cell Stress Chaperones ; 25(4): 655-665, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32301006

RESUMEN

Charcot-Marie-Tooth (CMT) disease is major hereditary neuropathy. CMT has been linked to mutations in a range of proteins, including the small heat shock protein HspB1. Here we review the properties of several HspB1 mutants associated with CMT. In vitro, mutations in the N-terminal domain lead to a formation of larger HspB1 oligomers when compared with the wild-type (WT) protein. These mutants are resistant to phosphorylation-induced dissociation and reveal lower chaperone-like activity than the WT on a range of model substrates. Mutations in the α-crystallin domain lead to the formation of yet larger HspB1 oligomers tending to dissociate at low protein concentration and having variable chaperone-like activity. Mutations in the conservative IPV motif within the C-terminal domain induce the formation of very large oligomers with low chaperone-like activity. Most mutants interact with a partner small heat shock protein, HspB6, in a manner different from that of the WT protein. The link between the altered physico-chemical properties and the pathological CMT phenotype is a subject of discussion. Certain HspB1 mutations appear to have an effect on cytoskeletal elements such as intermediate filaments and/or microtubules, and by this means damage the axonal transport. In addition, mutations of HspB1 can affect the metabolism in astroglia and indirectly modulate the viability of motor neurons. While the mechanisms of pathological mutations in HspB1 are likely to vary greatly across different mutations, further in vitro and in vivo studies are required for a better understanding of the CMT disease at molecular level.


Asunto(s)
Astrocitos/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Proteínas de Choque Térmico , Chaperonas Moleculares , Neuronas Motoras/metabolismo , Astrocitos/patología , Proteínas del Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Neuronas Motoras/patología , Mutación , Dominios Proteicos/genética , Proteostasis
20.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 152-157, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32134001

RESUMEN

The metabolism of sucrose is of crucial importance for life on Earth. In plants, enzymes called invertases split sucrose into glucose and fructose, contributing to the regulation of metabolic fluxes. Invertases differ in their localization and pH optimum. Acidic invertases present in plant cell walls and vacuoles belong to glycoside hydrolase family 32 (GH32) and have an all-ß structure. In contrast, neutral invertases are located in the cytosol and organelles such as chloroplasts and mitochondria. These poorly understood enzymes are classified into a separate GH100 family. Recent crystal structures of the closely related neutral invertases InvA and InvB from the cyanobacterium Anabaena revealed a predominantly α-helical fold with unique features compared with other sucrose-metabolizing enzymes. Here, a neutral invertase (AtNIN2) from the model plant Arabidopsis thaliana was heterologously expressed, purified and crystallized. As a result, the first neutral invertase structure from a higher plant has been obtained at 3.4 Šresolution. The hexameric AtNIN2 structure is highly similar to that of InvA, pointing to high evolutionary conservation of neutral invertases.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/genética , Cristalografía por Rayos X/métodos , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA