Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biosci Rep ; 44(10)2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39361893

RESUMEN

Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.


Asunto(s)
Dióxido de Carbono , Respuesta al Choque Térmico , Proteínas de Plantas , Zea mays , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Zea mays/metabolismo , Zea mays/enzimología , Respuesta al Choque Térmico/fisiología , Dióxido de Carbono/metabolismo , Sorghum/metabolismo , Sorghum/enzimología , Fotosíntesis , Setaria (Planta)/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/enzimología , Aclimatación , Calor , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Regulación de la Expresión Génica de las Plantas , Poaceae/enzimología , Poaceae/metabolismo
2.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586028

RESUMEN

Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.

3.
Metallomics ; 16(3)2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439674

RESUMEN

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1, but not CTR2, recapitulates the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high-affinity Cu(I) uptake. On the other hand, the overaccumulation of Cu(I) (20 times the quota) in zinc (Zn) deficiency depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and consistent with the lower substrate affinity of CTR2. ONE SENTENCE SUMMARY: Regulation of Cu uptake and sequestration by members of the CTR family of proteins in Chlamydomonas.


Asunto(s)
Chlamydomonas , Cobre , Cobre/metabolismo , Chlamydomonas/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Regulación de la Expresión Génica
4.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37905083

RESUMEN

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the unicellular green alga Chlamydomonas reinhardtii , Cu import is dependent on C opper R esponse R egulator 1 (CRR1), the master regulator of Cu homeostasis. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family ( CTR1 and CTR2 ) and a related soluble cysteine-rich protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1 , but not CTR2 , recapitulate the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high affinity Cu(I) uptake. Notably, the over-accumulation of Cu(I) in Zinc (Zn)-deficiency (20 times the quota) depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and is consistent with the lower substrate affinity of CTR2.

5.
Metallomics ; 15(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422438

RESUMEN

Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.


Asunto(s)
Chlamydomonas , Cisteína , Cisteína/metabolismo , Chlamydomonas/metabolismo , Zinc/metabolismo , Cobre/metabolismo , Homeostasis
6.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993560

RESUMEN

Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ~80-fold, corresponding to ~ 2.8 × 10 9 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.

7.
Plant Cell ; 35(2): 644-672, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36562730

RESUMEN

Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/genética , Genómica/métodos , Mutación/genética , Reproducción , Chlamydomonas reinhardtii/genética
8.
Plant J ; 112(2): 352-368, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986497

RESUMEN

Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.


Asunto(s)
Chlamydomonas , ARN Largo no Codificante , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , ARN Largo no Codificante/metabolismo , Metilación de ADN/genética , Cromatina/genética , Citosina
9.
Plant J ; 111(4): 995-1014, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699388

RESUMEN

Even subtle modifications in growth conditions elicit acclimation responses affecting the molecular and elemental makeup of organisms, both in the laboratory and in natural habitats. We systematically explored the effect of temperature, pH, nutrient availability, culture density, and access to CO2 and O2 in laboratory-grown algal cultures on growth rate, the ionome, and the ability to accumulate Fe. We found algal cells accumulate Fe in alkaline conditions, even more so when excess Fe is present, coinciding with a reduced growth rate. Using a combination of Fe-specific dyes, X-ray fluorescence microscopy, and NanoSIMS, we show that the alkaline-accumulated Fe was intracellularly sequestered into acidocalcisomes, which are localized towards the periphery of the cells. At high photon flux densities, Zn and Ca specifically over-accumulate, while Zn alone accumulates at low temperatures. The impact of aeration was probed by reducing shaking speeds and changing vessel fill levels; the former increased the Cu quota of cultures, the latter resulted in a reduction in P, Ca, and Mn at low fill levels. Trace element quotas were also affected in the stationary phase, where specifically Fe, Cu, and Zn accumulate. Cu accumulation here depends inversely on the Fe concentration of the medium. Individual laboratory strains accumulate Ca, P, and Cu to different levels. All together, we identified a set of specific changes to growth rate, elemental composition, and the capacity to store Fe in response to subtle differences in culturing conditions of Chlamydomonas, affecting experimental reproducibility. Accordingly, we recommend that these variables be recorded and reported as associated metadata.


Asunto(s)
Chlamydomonas , Oligoelementos , Reproducibilidad de los Resultados
10.
Plant Direct ; 6(3): e392, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35382117

RESUMEN

The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome-wide histone modification patterns and transcription factor-binding sites alike. Here, we established a ChIP-Seq framework for Chr. zofingiensis yielding over 20 million high-quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA-protein cross-linking. We used this ChIP-Seq framework to generate a genome-wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA-Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP-Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis.

11.
Plant Direct ; 6(2): e383, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35141461

RESUMEN

Copper (Cu) chaperones, of which yeast ATX1 is a prototype, are small proteins with a Cu(I) binding MxCxxC motif and are responsible for directing intracellular Cu toward specific client protein targets that use Cu as a cofactor. The Chlamydomonas reinhardtii ATX1 (CrATX1) was identified by its high sequence similarity with yeast ATX1. Like the yeast homologue, CrATX1 accumulates in iron-deficient cells (but is not impacted by other metal-deficiencies). N- and C-terminally YFP-ATX1 fusion proteins are distributed in the cytoplasm. Reverse genetic analysis using artificial microRNA (amiRNA) to generate lines with reduced CrATX1 abundance and CRISPR/Cpf1 to generate atx1 knockout lines validated a function for ATX1 in iron-poor cells, again reminiscent of yeast ATX1, most likely because of an impact on metalation of the multicopper oxidase FOX1, which is an important component in high-affinity iron uptake. We further identify other candidate ATX1 targets owing to reduced growth of atx1 mutant lines on guanine as a sole nitrogen source, which we attribute to loss of function of UOX1, encoding a urate oxidase, a cupro-enzyme involved in guanine assimilation. An impact of ATX1 on Cu distribution in atx1 mutants is strikingly evident by a reduced amount of intracellular Cu in all conditions probed in this work.

12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879572

RESUMEN

The acidocalcisome is an acidic organelle in the cytosol of eukaryotes, defined by its low pH and high calcium and polyphosphate content. It is visualized as an electron-dense object by transmission electron microscopy (TEM) or described with mass spectrometry (MS)-based imaging techniques or multimodal X-ray fluorescence microscopy (XFM) based on its unique elemental composition. Compared with MS-based imaging techniques, XFM offers the additional advantage of absolute quantification of trace metal content, since sectioning of the cell is not required and metabolic states can be preserved rapidly by either vitrification or chemical fixation. We employed XFM in Chlamydomonas reinhardtii to determine single-cell and organelle trace metal quotas within algal cells in situations of trace metal overaccumulation (Fe and Cu). We found up to 70% of the cellular Cu and 80% of Fe sequestered in acidocalcisomes in these conditions and identified two distinct populations of acidocalcisomes, defined by their unique trace elemental makeup. We utilized the vtc1 mutant, defective in polyphosphate synthesis and failing to accumulate Ca, to show that Fe sequestration is not dependent on either. Finally, quantitation of the Fe and Cu contents of individual cells and compartments via XFM, over a range of cellular metal quotas created by nutritional and genetic perturbations, indicated excellent correlation with bulk data from corresponding cell cultures, establishing a framework to distinguish the nutritional status of single cells.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Procesos Fototróficos/fisiología , Oligoelementos/metabolismo , Chlamydomonas/metabolismo , Homeostasis , Lisosomas/metabolismo , Microscopía Electrónica de Transmisión/métodos , Orgánulos/metabolismo , Análisis de la Célula Individual/métodos , Oligoelementos/análisis
13.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579822

RESUMEN

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.


Asunto(s)
Chlorophyta/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Sistemas de Lectura Abierta , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Transcripción Genética
15.
Nat Commun ; 11(1): 6269, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293544

RESUMEN

Silencing of exogenous DNA can make transgene expression very inefficient. Genetic screens in the model alga Chlamydomonas have demonstrated that transgene silencing can be overcome by mutations in unknown gene(s), thus producing algal strains that stably express foreign genes to high levels. Here, we show that the silencing mechanism specifically acts on transgenic DNA. Once a permissive chromatin structure has assembled, transgene expression can persist even in the absence of mutations disrupting the silencing pathway. We have identified the gene conferring the silencing and show it to encode a sirtuin-type histone deacetylase. Loss of gene function does not appreciably affect endogenous gene expression. Our data suggest that transgenic DNA is recognized and then quickly inactivated by the assembly of a repressive chromatin structure composed of deacetylated histones. We propose that this mechanism may have evolved to provide protection from potentially harmful types of environmental DNA.


Asunto(s)
Chlamydomonas/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Transgenes/genética , Mutación , Filogenia , Plantas Modificadas Genéticamente/genética , Transformación Genética , Secuenciación Completa del Genoma
16.
Proc Natl Acad Sci U S A ; 117(51): 32739-32749, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33273113

RESUMEN

In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas (Chlamydomonas reinhardtii) to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from Arabidopsis thaliana. The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled. Expression of the nuclear and chloroplast genes encoding both known and uncharacterized TIC-TOC components is highly coordinated, suggesting that a mechanism for regulating its biogenesis across compartmental boundaries must exist. Conditional repression of Tic214, the only chloroplast-encoded subunit in the TIC-TOC complex, impairs the import of chloroplast proteins with essential roles in chloroplast ribosome biogenesis and protein folding and induces a pleiotropic stress response, including several proteins involved in the chloroplast unfolded protein response. These findings underscore the functional importance of the TIC-TOC supercomplex in maintaining chloroplast proteostasis.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Complejos Multiproteicos/genética , Proteínas de Plantas/genética , Compartimento Celular , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Complejos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido
17.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118822, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32800924

RESUMEN

Plastocyanin and cytochrome c6, abundant proteins in photosynthesis, are readouts for cellular copper status in Chlamydomonas and other algae. Their accumulation is controlled by a transcription factor copper response regulator (CRR1). The replacement of copper-containing plastocyanin with heme-containing cytochrome c6 spares copper and permits preferential copper (re)-allocation to cytochrome oxidase. Under copper-replete situations, the quota depends on abundance of various cuproproteins and is tightly regulated, except under zinc-deficiency where acidocalcisomes over-accumulate Cu(I). CRR1 has a transcriptional activation domain, a Zn-dependent DNA binding SBP-domain with a nuclear localization signal, and a C-terminal Cys-rich region that represses the zinc regulon. CRR1 activates >60 genes in Chlamydomonas through GTAC-containing CuREs; transcriptome differences are recapitulated in the proteome. The differentially-expressed genes encode assimilatory copper transporters of the CTR/SLC31 family including a novel soluble molecule, redox enzymes in the tetrapyrrole pathway that promote chlorophyll biosynthesis and photosystem 1 accumulation, and other oxygen-dependent enzymes, which may influence thylakoid membrane lipids, specifically polyunsaturated galactolipids and γ-tocopherol. CRR1 also down-regulates 2 proteins in Chlamydomonas: for plastocyanin, by activation of proteolysis, while for the di­iron subunit of the cyclase in chlorophyll biosynthesis, through activation of an upstream promoter that generates a poorly-translated 5' extended transcript containing multiple short ORFs that inhibit translation. The functions of many CRR1-target genes are unknown, and the copper protein inventory in Chlamydomonas includes several whose functions are unexplored. The comprehensive picture of cuproproteins and copper homeostasis in this system is well-suited for reverse genetic analyses of these under-investigated components in copper biology.


Asunto(s)
Chlamydomonas/genética , Cobre/metabolismo , Fotosíntesis/genética , Transcriptoma/genética , Chlamydomonas/metabolismo , Citocromos c6/genética , Dihidrodipicolinato-Reductasa/genética , Complejo IV de Transporte de Electrones/genética , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Plastocianina/genética
18.
J Biol Chem ; 294(46): 17626-17641, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31527081

RESUMEN

Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.


Asunto(s)
Chlamydomonas/metabolismo , Iones/metabolismo , Manganeso/metabolismo , Vacuolas/efectos de los fármacos , Calcio/metabolismo , Chlamydomonas/efectos de los fármacos , Iones/química , Manganeso/toxicidad , Fósforo/metabolismo , Vacuolas/metabolismo , Espectroscopía de Absorción de Rayos X
19.
Proc Natl Acad Sci U S A ; 116(6): 2374-2383, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659148

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light-dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations that Chlamydomonas exhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genes PSBS, LHCSR1, and LHCSR3 show an acute response to lights-on at dawn under abrupt dark-to-light transitions, while LHCSR3 genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities.


Asunto(s)
Chlamydomonas/genética , Chlamydomonas/metabolismo , Genómica , Metabolómica , Proteómica , División Celular , Replicación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Glucólisis , Metaboloma , Metabolómica/métodos , NAD/metabolismo , Oxidación-Reducción , Fotosíntesis/genética , Proteoma , Proteómica/métodos , Transducción de Señal , Transcriptoma
20.
Nat Commun ; 9(1): 2361, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915221

RESUMEN

Nuclear pore complexes (NPCs) span the nuclear envelope and mediate nucleocytoplasmic exchange. They are a hallmark of eukaryotes and deeply rooted in the evolutionary origin of cellular compartmentalization. NPCs have an elaborate architecture that has been well studied in vertebrates. Whether this architecture is unique or varies significantly in other eukaryotic kingdoms remains unknown, predominantly due to missing in situ structural data. Here, we report the architecture of the algal NPC from the early branching eukaryote Chlamydomonas reinhardtii and compare it to the human NPC. We find that the inner ring of the Chlamydomonas NPC has an unexpectedly large diameter, and the outer rings exhibit an asymmetric oligomeric state that has not been observed or predicted previously. Our study provides evidence that the NPC is subject to substantial structural variation between species. The divergent and conserved features of NPC architecture provide insights into the evolution of the nucleocytoplasmic transport machinery.


Asunto(s)
Chlamydomonas reinhardtii/ultraestructura , Proteínas de Complejo Poro Nuclear/ultraestructura , Poro Nuclear/ultraestructura , Chlamydomonas reinhardtii/química , Evolución Molecular , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Polimerizacion , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA