Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biology (Basel) ; 12(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37508335

RESUMEN

A small skeletal fossil assemblage is described for the first time from the bioclastic limestone interbeds of the siltstone-dominated Guojiaba Formation, southern Shaanxi, China. The carbonate-hosted fossils include brachiopods (Eohadrotreta zhujiahensis, Eohadrotreta zhenbaensis, Spinobolus sp., Kuangshanotreta malungensis, Kyrshabaktella sp., Lingulellotreta yuanshanensis, Eoobolus incipiens, and Eoobolus sp.), sphenothallids (Sphenothallus sp.), archaeocyaths (Robustocyathus sp. and Yukonocyathus sp.), bradoriids (Kunmingella douvillei), chancelloriids sclerites (Onychia sp., Allonnia sp., Diminia sp., Archiasterella pentactina, and Chancelloria cf. eros), echinoderm plates, fragments of trilobites (Eoredlichia sp.), and hyolithelminths. The discovery of archaeocyaths in the Guojiaba Formation significantly extends their stratigraphic range in South China from the early Tsanglangpuian at least to the late Chiungchussuan. Thus, the Guojiaba Formation now represents the lowest known stratigraphic horizon where archaeocyath fossils have been found in the southern Shaanxi area. The overall assemblage is most comparable, in terms of composition, to Small skeletal fossil (SSF) assemblages from the early Cambrian Chengjiang fauna recovered from the Yu'anshan Formation in eastern Yunnan Province. The existing position that the Guojiaba Formation is correlated with Stage 3 in Cambrian Series 2 is strongly upheld based on the fossil assemblage recovered in this study.

2.
Curr Biol ; 33(8): 1565-1572.e3, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36893760

RESUMEN

Morphology usually serves as an effective proxy for functional ecology,1,2,3,4,5 and evaluating morphological, anatomical, and ecological changes permits a deeper understanding of the nature of diversification and macroevolution.5,6,7,8,9,10,11,12 Lingulid (order Lingulida) brachiopods are both diverse and abundant during the early Palaeozoic but decrease in diversity over time, with only a few genera of linguloids and discinoids present in modern marine ecosystems, resulting in them frequently being referred to as "living fossils."13,14,15 The dynamics that drove this decline remain uncertain, and it has not been determined if there is an associated decline in morphological and ecological diversity. Here, we apply geometric morphometrics to reconstruct global morphospace occupation for lingulid brachiopods through the Phanerozoic, with results showing that maximum morphospace occupation was reached by the Early Ordovician. At this time of peak diversity, linguloids with a sub-rectangular shell shape already possessed several evolutionary features, such as the rearrangement of mantle canals and reduction of the pseudointerarea, common to all modern infaunal forms. The end Ordovician mass extinction has a differential effect on linguloids, disproportionally wiping out those forms with a rounded shell shape, while forms with sub-rectangular shells survived both the end Ordovician and the Permian-Triassic mass extinctions, leaving a fauna predominantly composed of infaunal forms. For discinoids, both morphospace occupation and epibenthic life strategies remain consistent through the Phanerozoic. Morphospace occupation over time, when considered using anatomical and ecological analyses, suggests that the limited morphological and ecological diversity of modern lingulid brachiopods reflects evolutionary contingency rather than deterministic processes.


Asunto(s)
Ecosistema , Extinción Biológica , Animales , Biodiversidad , Invertebrados/genética , Evolución Biológica , Fósiles
3.
R Soc Open Sci ; 10(2): 221210, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844802

RESUMEN

Identifying competitive exclusion at the macroevolutionary scale has typically relied on demonstrating a reciprocal, contradictory response by two co-occurring, functionally similar clades. Finding definitive examples of such a response in fossil time series has proven challenging, however, as has controlling for the effects of a changing physical environment. We take a novel approach to this issue by quantifying variation in trait values that capture almost the entirety of function for steam locomotives (SL), a known example of competitive exclusion from material culture, with the goal of identifying patterns suitable for assessing clade replacement in the fossil record. Our analyses find evidence of an immediate, directional response to the first appearance of a direct competitor, with subsequent competitors further reducing the realized niche of SLs, until extinction was the inevitable outcome. These results demonstrate when interspecific competition should lead to extinction and suggest that clade replacement may only occur when niche overlap between an incumbent and its competitors is near absolute and where the incumbent is incapable of transitioning to a new adaptive zone. Our findings provide the basis for a new approach to analyse putative examples of competitive exclusion that is largely free of a priori assumptions.

4.
Nature ; 599(7884): 251-255, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707285

RESUMEN

Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13.


Asunto(s)
Evolución Biológica , Briozoos , Fósiles , Animales , Australia , Briozoos/anatomía & histología , Briozoos/clasificación , China , Fenotipo , Filogenia , Factores de Tiempo
5.
Nat Commun ; 11(1): 2625, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488075

RESUMEN

Parasite-host systems are pervasive in nature but are extremely difficult to convincingly identify in the fossil record. Here we report quantitative evidence of parasitism in the form of a unique, enduring life association between tube-dwelling organisms encrusted to densely clustered shells of a monospecific organophosphatic brachiopod assemblage from the lower Cambrian (Stage 4) of South China. Brachiopods with encrusting tubes have decreased biomass (indicating reduced fitness) compared to individuals without tubes. The encrusting tubes orient tightly in vectors matching the laminar feeding currents of the host, suggesting kleptoparasitism. With no convincing parasite-host interactions known from the Ediacaran, this widespread sessile association reveals intimate parasite-host animal systems arose in early Cambrian benthic communities and their emergence may have played a key role in driving the evolutionary and ecological innovations associated with the Cambrian radiation.


Asunto(s)
Fósiles/parasitología , Interacciones Huésped-Parásitos , Invertebrados/parasitología , Animales , Teorema de Bayes , Evolución Biológica , Biomasa , Fósiles/anatomía & histología , Historia Antigua , Invertebrados/anatomía & histología , Paleontología , Simbiosis
6.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135165

RESUMEN

Basal metabolic rate (BMR) is posited to be a fundamental control on the structure and dynamics of ecological networks, influencing organism resource use and rates of senescence. Differences in the maintenance energy requirements of individual species therefore potentially predict extinction likelihood. If validated, this would comprise an important link between organismic ecology and macroevolutionary dynamics. To test this hypothesis, the BMRs of organisms within fossil species were determined using body size and temperature data, and considered in the light of species' survival and extinction through time. Our analysis focused on the high-resolution record of Pliocene to recent molluscs (bivalves and gastropods) from the Western Atlantic. Species-specific BMRs were calculated by measuring the size range of specimens from museum collections, determining ocean temperature using the HadCM3 global climate model, and deriving values based on relevant equations. Intriguingly, a statistically significant difference in metabolic rate exists between those bivalve and gastropod taxa that went extinct and those that survived throughout the course of the Neogene. This indicates that there is a scaling up from organismic properties to species survival for these communities. Metabolic rate could therefore represent an important metric for predicting future extinction patterns, with changes in global climate potentially affecting the lifespan of individuals, ultimately leading to the extinction of the species they are contained within. We also find that, at the assemblage level, there are no significant differences in metabolic rates for different time intervals throughout the entire study period. This may suggest that Neogene mollusc communities have remained energetically stable, despite many extinctions.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Bivalvos/fisiología , Clima , Gastrópodos/fisiología , Animales , Océano Atlántico , Canadá , Fósiles , Especificidad de la Especie , Estados Unidos
7.
Sci Data ; 5: 180109, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30152812

RESUMEN

Marine microfossils record the environmental, ecological, and evolutionary dynamics of past oceans in temporally expanded sedimentary archives. Rapid imaging approaches provide a means of exploiting the primary advantage of this archive, the vast number of fossils, for evolution and ecology. Here we provide the first large scale image and 2D and 3D shape dataset of modern planktonic foraminifera, a major microfossil group, from 34 Atlantic Ocean sediment samples. Information on more than 124,000 objects is provided, including general object classification for 4/5ths of the dataset (~ 99,000 objects). Of the ~ 99,000 classifications provided, more than 61,000 are complete or damaged planktonic foraminifera. Objects also include benthic foraminifera, ostracods, pteropods, spicules, and planktonic foraminifera test fragments, among others. This dataset is the first major microfossil output of a new high-throughput imaging method (AutoMorph) developed to extract 2D and 3D data from photographic images of fossils. Our sample preparation and imaging techniques are described in detail. The data provided here comprises the most extensive publically available archive of planktonic foraminiferal morphology and morphological variation to date.


Asunto(s)
Foraminíferos , Plancton , Animales , Océano Atlántico
8.
Biol Lett ; 14(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720444

RESUMEN

The Red Queen hypothesis (RQH) is both familiar and murky, with a scope and range that has broadened beyond its original focus. Although originally developed in the palaeontological arena, it now encompasses many evolutionary theories that champion biotic interactions as significant mechanisms for evolutionary change. As such it de-emphasizes the important role of abiotic drivers in evolution, even though such a role is frequently posited to be pivotal. Concomitant with this shift in focus, several studies challenged the validity of the RQH and downplayed its propriety. Herein, we examine in detail the assumptions that underpin the RQH in the hopes of furthering conceptual understanding and promoting appropriate application of the hypothesis. We identify issues and inconsistencies with the assumptions of the RQH, and propose a redefinition where the Red Queen's reign is restricted to certain types of biotic interactions and evolutionary patterns occurring at the population level.


Asunto(s)
Evolución Biológica , Extinción Biológica , Conducta Competitiva , Ecosistema , Modelos Biológicos , Paleontología , Selección Genética
9.
Sci Rep ; 6: 24846, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126520

RESUMEN

The sedimentary record, and associated micropalaeontological proxies, is one tool that has been employed to quantify a region's tropical cyclone history. Doing so has largely relied on the identification of allochthonous deposits (sediments and microfossils), sourced from deeper water and entrained by tropical cyclone waves and currents, in a shallow-water or terrestrial setting. In this study, we examine microfossil assemblages before and after a known tropical cyclone event (Cyclone Hamish) with the aim to better resolve the characteristics of this known signal. Our results identify no allochthonous material associated with Cyclone Hamish. Instead, using a swathe of statistical tools typical of ecological studies but rarely employed in the geosciences, we identify new, previously unidentified, signal types. These signals include a homogenising effect, with the level of differentiation between sample sites greatly reduced immediately following Cyclone Hamish, and discernible shifts in assemblage diversity. In the subsequent years following Hamish, the surface assemblage returns to its pre-cyclone form, but results imply that it is unlikely the community ever reaches steady state.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Tormentas Ciclónicas , Foraminíferos/clasificación , Foraminíferos/crecimiento & desarrollo , Fósiles
10.
BMC Evol Biol ; 15: 42, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25886965

RESUMEN

BACKGROUND: One of the first phyla to acquire biomineralized skeletal elements in the Cambrian, brachiopods represent a vital component in unraveling the early evolution and relationships of the Lophotrochozoa. Critical to improving our understanding of lophotrochozoans is the origin, evolution and function of unbiomineralized morphological features, in particular features such as chaetae that are shared between brachiopods and other lophotrochozoans but are poorly understood and rarely preserved. Micromitra burgessensis and Paterina zenobia from the middle Cambrian Burgess Shale are among the most remarkable examples of fossilized chaetae-bearing brachiopods. The form, functional morphology, evolutionary and ecological significance of their chaetae are studied herein. RESULTS: Like in Recent forms, the moveable but semi-rigid chaetae fringe both the dorsal and ventral mantle margins, but in terms of length, the chaetae of Burgess Shale taxa can exceed twice the maximum length of the shell from which it projects. This is unique amongst Recent and fossil brachiopod taxa and given their size, prominence and energy investment to the organism certainly had an important functional significance. Micromitra burgessensis individuals are preserved on hard skeletal elements, including conspecific shells, Tubulella and frequently on the spicules of the sponge Pirania muricata, providing direct evidence of an ecological association between two species. Morphological analysis and comparisons with fossil and extant brachiopod chaetae point to a number of potential functions, including sensory, defence, feeding, defouling, mimicry and spatial competition. CONCLUSIONS: Our study indicates that it is feasible to link chaetae length to the lack of suitable substrate in the Burgess Shale environment and the increased intraspecific competition associated with this. Our results however, also lend support to the elongated chaetae as an example of Batesian mimicry, of the unpalatable sponge Pirania muricata. We also cannot discount brachiopod chaetae acting as a sensory grille, extending the tactile sensitivity of the mantle into the environment, as an early warning system to approaching predators.


Asunto(s)
Fósiles , Invertebrados/anatomía & histología , Poríferos/anatomía & histología , Animales , Evolución Biológica , Ecología , Invertebrados/clasificación , Invertebrados/genética
12.
Proc Natl Acad Sci U S A ; 110(8): 2904-9, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23378632

RESUMEN

Assessing the extent to which population subdivision during cladogenesis is necessary for long-term phenotypic evolution is of fundamental importance in a broad range of biological disciplines. Differentiating cladogenesis from anagenesis, defined as evolution within a species, has generally been hampered by dating precision, insufficient fossil data, and difficulties in establishing a direct link between morphological changes detectable in the fossil record and biological species. Here we quantify the relative frequencies of cladogenesis and anagenesis for macroperforate planktic Foraminifera, which arguably have the most complete fossil record currently available, to address this question. Analyzing this record in light of molecular evidence, while taking into account the precision of fossil dating techniques, we estimate that the fraction of speciation events attributable to anagenesis is <19% during the Cenozoic era (last 65 Myr) and <10% during the Neogene period (last 23 Myr). Our central conclusion--that cladogenesis is the predominant mode by which new planktic Foraminifera taxa become established at macroevolutionary time scales--differs markedly from the conclusion reached in a recent study based solely on fossil data. These disparate findings demonstrate that interpretations of macroevolutionary dynamics in the fossil record can be fundamentally altered in light of genetic evidence.


Asunto(s)
Evolución Biológica , Fósiles , Especiación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA