Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 406(6792): 169-72, 2000 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-10910352

RESUMEN

Highly porous materials such as mesoporous oxides are of technological interest for catalytic, sensing and remediation applications: the mesopores (of size 2-50 nm) permit ingress by molecules and guests that are physically excluded from microporous materials. Connecting the interior of porous materials with a nanoscale or 'molecular' wire would allow the direct electronic control (and monitoring) of chemical reactions and the creation of nanostructures for high-density electronic materials. The challenge is to create an electronic pathway (that is, a wire) within a mesoporous platform without greatly occluding its free volume and reactive surface area. Here we report the synthesis of an electronically conductive mesoporous composite--by the cryogenic decomposition of RuO4--on the nanoscale network of a partially densified silica aerogel. The composite consists of a three-dimensional web of interconnected (approximately 4-nm in diameter) crystallites of RuO2, supported conformally on the nanoscopic silica network. The resulting monolithic (RuO2//SiO2) composite retains the free volume of the aerogel and exhibits pure electronic conductivity. In addition to acting as a wired mesoporous platform, the RuO2-wired silica aerogel behaves as a porous catalytic electrode for the oxidation of chloride to molecular chlorine.

2.
Science ; 284(5414): 622-4, 1999 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-10213681

RESUMEN

Low-density nanoscale mesoporous composites may be readily synthesized by adding a colloidal or dispersed solid to an about-to-gel silica sol. The silica sol can "glue" a range of chemically and physically diverse particles into the three-dimensional silica network formed upon gelation. If the composite gel is supercritically dried so as to maintain the high porosity of the wet gel, a composite aerogel is formed in which the nanoscopic surface and bulk properties of each component are retained in the solid composite. The volume fraction of the second solid can be varied above or below a percolation threshold to tune the transport properties of the composite aerogel and thereby design nanoscale materials for chemical, electronic, and optical applications.

3.
Phys Rev B Condens Matter ; 51(17): 12026-12029, 1995 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9977964
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA