Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Trends Biochem Sci ; 47(9): 795-809, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35654690

RESUMEN

The bacterial injectisome is a structurally conserved, syringe-shaped nanomachine that spans the Gram-negative envelope and forms a continuous channel for type III secretion of protein effectors. The injectisome, and the host-modulating effectors it secretes, are essential for the pathogenesis of several Gram-negative bacterial species, and it is a key virulence factor associated with the progression of many clinical and community-based infectious diseases. The molecular structure of the injectisome has been the focus of intense research efforts over the past 30 years, and during this time significant progress has been made in determining the molecular structures of many components. In this review we present major advances in our structural and mechanistic understanding of the injectisome, as facilitated by cryoelectron microscopy approaches.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacterias/metabolismo , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Bacterias Gramnegativas/metabolismo , Factores de Virulencia/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-33139287

RESUMEN

The bacterial cell wall plays a key role in viability and is an important drug target. The cell wall is made of elongated polymers that are cross-linked to one another to form a load-bearing mesh. An alternative cell wall cross-linking mechanism used by the l,d-transpeptidase YcbB has been implicated in the stress-regulated roles of ß-lactam resistance, outer membrane defect rescue, and typhoid toxin release. The role for this stress-linked cross-linking in the context of a host infection was unclear. Here, we resolve the crystallographic structures of both Salmonella Typhi YcbB and Citrobacter rodentium YcbB acylated with ertapenem that delineate the conserved structural characteristics of YcbB. In parallel, we show that the general involvement of YcbB in peptidoglycan reinforcement under conditions of bacterial outer envelope stress does not play a significant role in acute infections of mice by C. rodentium and S Typhimurium. Cumulatively, in this work we provide a foundation for the development of novel YcbB-specific antibacterial therapeutics to assist in treatment of increasingly drug-resistant S Typhi infections.


Asunto(s)
Peptidil Transferasas , Fiebre Tifoidea , Animales , Citrobacter rodentium , Ratones , Salmonella typhi/genética , Salmonella typhimurium/genética , Fiebre Tifoidea/tratamiento farmacológico
3.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998902

RESUMEN

Staphylococcus aureus is a major human pathogen that has acquired alarming broad-spectrum antibiotic resistance. One group of secreted toxins with key roles during infection is the phenol-soluble modulins (PSMs). PSMs are amphipathic, membrane-destructive cytolytic peptides that are exported to the host-cell environment by a designated adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, the PSM transporter (PmtABCD). Here, we demonstrate that the minimal Pmt unit necessary for PSM export is PmtCD and provide its first atomic characterization by single-particle cryo-EM and x-ray crystallography. We have captured the transporter in the ATP-bound state at near atomic resolution, revealing a type II ABC exporter fold, with an additional cytosolic domain. Comparison to a lower-resolution nucleotide-free map displaying an "open" conformation and putative hydrophobic inner chamber of a size able to accommodate the binding of two PSM peptides provides mechanistic insight and sets the foundation for therapeutic design.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Péptidos/metabolismo
4.
Nat Commun ; 9(1): 3840, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242280

RESUMEN

The bacterial type III secretion system, or injectisome, is a syringe shaped nanomachine essential for the virulence of many disease causing Gram-negative bacteria. At the core of the injectisome structure is the needle complex, a continuous channel formed by the highly oligomerized inner and outer membrane hollow rings and a polymerized helical needle filament which spans through and projects into the infected host cell. Here we present the near-atomic resolution structure of a needle complex from the prototypical Salmonella Typhimurium SPI-1 type III secretion system, with local masking protocols allowing for model building and refinement of the major membrane spanning components of the needle complex base in addition to an isolated needle filament. This work provides significant insight into injectisome structure and assembly and importantly captures the molecular basis for substrate induced gating in the giant outer membrane secretin portal family.


Asunto(s)
Sistemas de Secreción Tipo III/ultraestructura , Microscopía por Crioelectrón , Salmonella
5.
J Struct Biol ; 204(1): 1-8, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29886194

RESUMEN

Environmental stress factors initiate the developmental process of sporulation in some Gram-positive bacteria including Bacillus subtilis. Upon sporulation initiation the bacterial cell undergoes a series of morphological transformations that result in the creation of a single dormant spore. Early in sporulation, an asymmetric cell division produces a larger mother cell and smaller forespore. Next, the mother cell septal membrane engulfs the forespore, and an essential channel, the so-called feeding-tube apparatus, is formed. This assembled channel is thought to form a transenvelope secretion complex that crosses both mother cell and forespore membranes. At least nine proteins are essential for channel formation including SpoIIQ under forespore control and the eight SpoIIIA proteins (SpoIIIAA-AH) under mother cell control. Several of these proteins share similarity with components of Gram-negative bacterial secretion systems and the flagellum. Here we report the X-ray crystallographic structure of the soluble domain of SpoIIIAF to 2.7 Šresolution. Like the channel components SpoIIIAG and SpoIIIAH, SpoIIIAF adopts a conserved ring-building motif (RBM) fold found in proteins from numerous dual membrane secretion systems of distinct function. The SpoIIIAF RBM fold contains two unique features: an extended N-terminal helix, associated with multimerization, and an insertion at a loop region that can adopt two distinct conformations. The ability of the same primary sequence to adopt different secondary structure conformations is associated with protein regulation, suggesting a dual structural and regulatory role for the SpoIIIAF RBM. We further analyzed potential interaction interfaces by structure-guided mutagenesis in vivo. Collectively, our data provide new insight into the possible roles of SpoIIIAF within the secretion-like apparatus during sporulation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/fisiología , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Esporas Bacterianas/fisiología
6.
J Struct Biol ; 202(2): 105-112, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288127

RESUMEN

Endospore formation in the Gram-positive bacterium Bacillus subtilis initiates in response to nutrient depletion and involves a series of morphological changes that result in the creation of a dormant spore. Early in this developmental process, the cell undergoes an asymmetric cell division that produces the larger mother cell and smaller forespore, the latter destined to become the mature spore. The mother cell septal membrane then engulfs the forespore, at which time an essential channel, the so-called feeding-tube apparatus, is thought to cross both membranes to create a direct conduit between the cells. At least nine proteins are required to form this channel including SpoIIQ under forespore control and SpoIIIAA-AH under the mother cell control. Several of these proteins share similarity to components of Type-II, -III and -IV secretion systems as well as the flagellum from Gram-negative bacteria. Here we report the X-ray crystallographic structure of the cytosolic domain of SpoIIIAB to 2.3 Šresolution. This domain adopts a conserved, secretion-system related fold of a six membered anti-parallel helical bundle with a positively charged membrane-interaction face at one end and a small groove at the other end that may serve as a binding site for partner proteins in the assembled apparatus. We analyzed and identified potential interaction interfaces by structure-guided mutagenesis in vivo. Furthermore, we were able to identify a remarkable structural homology to the C-subunit of a bacterial V-ATPase. Collectively, our data provides new insight into the possible roles of SpoIIIAB protein within the secretion-like apparatus essential to bacterial sporulation.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Esporas Bacterianas/química , ATPasas de Translocación de Protón Vacuolares/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , División Celular/genética , Cristalografía por Rayos X , Mutagénesis/genética , Conformación Proteica en Hélice alfa/genética , Dominios Proteicos/genética , Pliegue de Proteína , Esporas Bacterianas/genética , Homología Estructural de Proteína , ATPasas de Translocación de Protón Vacuolares/genética
7.
Nature ; 540(7634): 597-601, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27974800

RESUMEN

The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.

8.
J Mol Biol ; 365(3): 663-79, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17070843

RESUMEN

Proteins bind one another in aqua's solution to form tight and specific complexes. Previously we have shown that this is achieved through the modular architecture of the interaction network formed by the interface residues, where tight cooperative interactions are found within modules but not between them. Here we extend this study to cover the entire interface of TEM1 beta-lactamase and its protein inhibitor BLIP using an improved method for deriving interaction maps based on REDUCE to add hydrogen atoms and then by evaluating the interactions using modifications of the programs PROBE, NCI and PARE. An extensive mutagenesis study of the interface residues indeed showed that each module is energetically independent on other modules, and that cooperativity is found only within a module. By solving the X-ray structure of two interface mutations affecting two different modules, we demonstrated that protein-protein binding occur via the structural reorganization of the binding modules, either by a "lock and key" or an induced fit mechanism. To explain the cooperativity within a module, we performed multiple-mutant cycle analysis of cluster 2 resulting in a high-resolution energy map of this module. Mutant studies are usually done in reference to alanine, which can be regarded as a deletion of a side-chain. However, from a biological perspective, there is a major interest to understand non-Ala substitutions, as they are most common. Using X-ray crystallography and multiple-mutant cycle analysis we demonstrated the added complexity in understanding non-Ala mutations. Here, a double mutation replacing the wild-type Glu,Tyr to Tyr,Asn on TEM1 (res id 104,105) caused a major backbone structural rearrangement of BLIP, changing the composition of two modules but not of other modules within the interface. This shows the robustness of the modular approach, yet demonstrates the complexity of in silico protein design.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Mapeo de Interacción de Proteínas , Alanina/genética , Secuencia de Aminoácidos , Sitios de Unión , Análisis por Conglomerados , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica
9.
Biochemistry ; 40(49): 14763-71, 2001 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-11732895

RESUMEN

The structure of L-ribulose-5-phosphate 4-epimerase from E. coli has been solved to 2.4 A resolution using X-ray diffraction data. The structure is homo-tetrameric and displays C(4) symmetry. Each subunit has a single domain comprised of a central beta-sheet flanked on either side by layers of alpha-helices. The active site is identified by the position of the catalytic zinc residue and is located at the interface between two adjacent subunits. A remarkable feature of the structure is that it shows a very close resemblance to that of L-fuculose-1-phosphate aldolase. This is consistent with the notion that both enzymes belong to a superfamily of epimerases/aldolases that catalyze carbon-carbon bond cleavage reactions via a metal-stabilized enolate intermediate. Detailed inspection of the epimerase structure, however, indicates that despite the close overall structural similarity to class II aldolases, the enzyme has evolved distinct active site features that promote its particular chemistry.


Asunto(s)
Carbohidrato Epimerasas/química , Escherichia coli/enzimología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/aislamiento & purificación , Carbohidrato Epimerasas/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Alineación de Secuencia
10.
Biochemistry ; 40(49): 14772-80, 2001 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-11732896

RESUMEN

L-Ribulose-5-phosphate (L-Ru5P) 4-epimerase and L-fuculose-1-phosphate (L-Fuc1P) aldolase are evolutionarily related enzymes that display 26% sequence identity and a very high degree of structural similarity. They both employ a divalent cation in the formation and stabilization of an enolate during catalysis, and both are able to deprotonate the C-4 hydroxyl group of a phosphoketose substrate. Despite these many similarities, subtle distinctions must be present which allow the enzymes to catalyze two seemingly different reactions and to accommodate substrates differing greatly in the position of the phosphate (C-5 vs C-1). Asp76 of the epimerase corresponds to the key catalytic acid/base residue Glu73 of the aldolase. The D76N mutant of the epimerase retained considerable activity, indicating it is not a key catalytic residue in this enzyme. In addition, the D76E mutant did not show enhanced levels of background aldolase activity. Mutations of residues in the putative phosphate-binding pocket of the epimerase (N28A and K42M) showed dramatically higher values of K(M) for L-Ru5P. This indicates that both enzymes utilize the same phosphate recognition pocket, and since the phosphates are positioned at opposite ends of the respective substrates, the two enzymes must bind their substrates in a reversed or "flipped" orientation. The epimerase mutant D120N displays a 3000-fold decrease in the value of k(cat), suggesting that Asp120' provides a key catalytic acid/base residue in this enzyme. Analysis of the D120N mutant by X-ray crystallography shows that its structure is indistinguishable from that of the wild-type enzyme and that the decrease in activity was not simply due to a structural perturbation of the active site. Previous work [Lee, L. V., Poyner, R. R., Vu, M. V., and Cleland, W. W. (2000) Biochemistry 39, 4821-4830] has indicated that Tyr229' likely provides the other catalytic acid/base residue. Both of these residues are supplied by an adjacent subunit. Modeling of L-Ru5P into the active site of the epimerase structure suggests that Tyr229' is responsible for deprotonating L-Ru5P and Asp120' is responsible for deprotonating its epimer, D-Xu5P.


Asunto(s)
Aldehído-Liasas/metabolismo , Carbohidrato Epimerasas/metabolismo , Escherichia coli/enzimología , Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/química , Aldehído-Liasas/genética , Sitios de Unión , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Catálisis , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacología , Cinética , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína
11.
Nat Struct Biol ; 8(12): 1031-6, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11685226

RESUMEN

Several Gram-negative bacterial pathogens have evolved a type III secretion system to deliver virulence effector proteins directly into eukaryotic cells, a process essential for disease. This specialized secretion process requires customized chaperones specific for particular effector proteins. The crystal structures of the enterohemorrhagic Escherichia coli O157:H7 Tir-specific chaperone CesT and the Salmonella enterica SigD-specific chaperone SigE reveal a common overall fold and formation of homodimers. Site-directed mutagenesis suggests that variable, delocalized hydrophobic surfaces observed on the chaperone homodimers are responsible for specific binding to a particular effector protein. Isothermal titration calorimetry studies of Tir-CesT and enzymatic activity profiles of SigD-SigE indicate that the effector proteins are not globally unfolded in the presence of their cognate chaperones.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Salmonella enterica/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Dimerización , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Desnaturalización Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Alineación de Secuencia , Solventes , Especificidad por Sustrato , Ultracentrifugación
12.
Cell ; 106(5): 585-94, 2001 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-11551506

RESUMEN

LexA repressor undergoes a self-cleavage reaction. In vivo, this reaction requires an activated form of RecA, but it occurs spontaneously in vitro at high pH. Accordingly, LexA must both allow self-cleavage and yet prevent this reaction in the absence of a stimulus. We have solved the crystal structures of several mutant forms of LexA. Strikingly, two distinct conformations are observed, one compatible with cleavage, and the other in which the cleavage site is approximately 20 A from the catalytic center. Our analysis provides insight into the structural and energetic features that modulate the interconversion between these two forms and hence the rate of the self-cleavage reaction. We suggest RecA activates the self-cleavage of LexA and related proteins through selective stabilization of the cleavable conformation.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/química , Estructura Terciaria de Proteína , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Alineación de Secuencia , Serina Endopeptidasas/genética
13.
Nat Struct Biol ; 8(10): 848-52, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11573088

RESUMEN

The structure of the 28 kDa beta-lactamase inhibitor protein-II (BLIP-II) in complex with the TEM-1 beta-lactamase has been determined to 2.3 A resolution. BLIP-II is a secreted protein produced by the soil bacterium Streptomyces exfoliatus SMF19 and is able to bind and inhibit TEM-1 with subnanomolar affinity. BLIP-II is a seven-bladed beta-propeller with a unique blade motif consisting of only three antiparallel beta-strands. The overall fold is highly similar to the core structure of the human regulator of chromosome condensation (RCC1). Although BLIP-II does not share the same fold with BLIP, the first beta-lactamase inhibitor protein for which structural data was available, a comparison of the two complexes reveals a number of similarities and provides further insights into key components of the TEM-1-BLIP and TEM-1-BLIP-II interfaces. Our preliminary results from gene knock-out studies and scanning electron microscopy also reveal a critical role of BLIP-II in sporulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Streptomyces/química , beta-Lactamasas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Cinética , Ligandos , Microscopía Electrónica de Rastreo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Streptomyces/ultraestructura
14.
J Mol Biol ; 311(4): 735-49, 2001 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-11518527

RESUMEN

The agfBAC operon of Salmonella enteritidis encodes thin aggregative fimbriae, fibrous, polymeric structures primarily composed of AgfA fimbrins. Although uncharacterized, AgfB shows a 51 % overall amino acid sequence similarity to AgfA. Using AgfB epitope-specific antiserum, AgfB was detected as a minor component of whole, purified fimbriae. Like AgfA, AgfB was released from purified fimbriae by >70 % formic acid, whereupon both AgfA-AgfA and AgfA-AgfB dimers as well as monomers were detected. This suggested that AgfB may form specific, highly stable, structural associations with AgfA in native fimbrial filaments, associations that were weakened in structurally unstable fibers derived from AgfA chimeric fimbrial mutants. Detailed sequence comparisons between AgfA and AgfB showed that AgfB harbored a similar fivefold repeated sequence pattern (x(6)QxGx(2)NxAx(3)Q), and contained structural motifs similar to the parallel beta helix model proposed for AgfA. Molecular modeling of AgfB revealed a 3D structure remarkably similar to that of AgfA, the structures differing principally in the surface disposition of non-conserved, basic, acidic and non-polar residues. Thus AgfB is a fimbrin-like structural homologue of AgfA and an integral, minor component of native thin aggregative fimbrial fibers. AgfB from an agfA deletion strain was detected as a non-fimbrial, SDS-insoluble form in the supernatant and was purified. AgfA from an agfB deletion strain was found in both SDS-soluble and insoluble, non-fimbrial forms. No AgfA-AgfA dimers were detected in the absence of AgfB. Fimbriae formation by intercellular complementation between agfB and agfA deletion strains could not be shown under a variety of conditions, indicating that AgfA and AgfB are not freely diffusible in S. enteritidis. This has important implications on the current assembly hypothesis for thin aggregative fimbriae.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Fimbrias , Fimbrias Bacterianas/química , Salmonella enteritidis/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Especificidad de Anticuerpos , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/aislamiento & purificación , Western Blotting , Dimerización , Mapeo Epitopo , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Fimbrias Bacterianas/genética , Modelos Moleculares , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Salmonella enteritidis/genética , Análisis de Secuencia de Proteína , Eliminación de Secuencia/genética , Electricidad Estática
15.
Biochemistry ; 40(31): 9412-20, 2001 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-11478911

RESUMEN

The factors influencing the oligomerization state of OXA-10 and OXA-14 class D beta-lactamases in solution have been investigated. Both enzymes were found to exist as an equilibrium mixture of a monomer and dimer, with a K(d) close to 40 microM. The dimeric form was stabilized by divalent metal cations. The ability of different metal ions to stabilize the dimer was in the following order: Cd(2+) > Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) > Mn(2+) > Ca(2+) > Mg(2+). The apparent K(d)s describing the binding of Zn(2+) and Cd(2+) cations to the OXA-10 dimer were 7.8 and 5.7 microM, respectively. The metal ions had a profound effect on the thermal stability of the protein complex observed by differential scanning calorimetry. The enzyme showed a sharp transition with a T(m) of 58.7 degrees C in the absence of divalent cations, and an equally sharp transition with a T(m) of 78.4 degrees C in the presence of a saturating concentration of the divalent cation. The thermal transition observed at intermediate concentrations of divalent metal ions was rather broad and lies between these two extremes of temperature. The equilibrium between the monomer and dimer is dependent on pH, and the optimum for the formation of the dimer shifted from pH 6.0 in the absence of divalent cations to pH 7.5 at saturating concentrations. The beta-lactamase activity increased approximately 2-fold in the presence of saturating concentrations of zinc and cadmium ions. Reaction with beta-lactams caused a shift in the equilibrium toward monomer formation, and thus an apparent inactivation, but the divalent cations protected against this effect.


Asunto(s)
Metales/química , Pseudomonas aeruginosa/enzimología , beta-Lactamasas/química , Sitios de Unión , Cloruro de Cadmio/química , Cationes Bivalentes/química , Cloruros/química , Cobalto/química , Dimerización , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Níquel/química , Compuestos de Zinc/química
16.
Nat Struct Biol ; 8(2): 166-75, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11175908

RESUMEN

Many bacterial pathogens express lipooligosaccharides that mimic human cell surface glycoconjugates, enabling them to attach to host receptors and to evade the immune response. In Neisseria meningitidis, the galactosyltransferase LgtC catalyzes a key step in the biosynthesis of lipooligosaccharide structure by transferring alpha-d-galactose from UDP-galactose to a terminal lactose. The product retains the configuration of the donor sugar glycosidic bond; LgtC is thus a retaining glycosyltranferase. We report the 2 A crystal structures of the complex of LgtC with manganese and UDP 2-deoxy-2-fluoro-galactose (a donor sugar analog) in the presence and absence of the acceptor sugar analog 4'-deoxylactose. The structures, together with results from site-directed mutagenesis and kinetic analysis, give valuable insights into the unique catalytic mechanism and, as the first structure of a glycosyltransferase in complex with both the donor and acceptor sugars, provide a starting point for inhibitor design.


Asunto(s)
Proteínas Bacterianas , Metabolismo de los Hidratos de Carbono , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Neisseria meningitidis/enzimología , Uridina Difosfato Galactosa/análogos & derivados , Secuencia de Aminoácidos , Sitios de Unión , Carbohidratos/química , Catálisis , Cristalografía por Rayos X , Diseño de Fármacos , Galactosiltransferasas/antagonistas & inhibidores , Galactosiltransferasas/genética , Glicosiltransferasas/antagonistas & inhibidores , Glicosiltransferasas/genética , Enlace de Hidrógeno , Cinética , Lactosa/análogos & derivados , Lactosa/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Neisseria meningitidis/genética , Estructura Secundaria de Proteína , Alineación de Secuencia , Uridina Difosfato Galactosa/metabolismo
17.
Biochemistry ; 40(2): 395-402, 2001 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-11148033

RESUMEN

PSE-4 is a class A beta-lactamase produced by strains of Pseudomonas aeruginosa and is highly active for the penicillin derivative carbenicillin. The crystal structure of the wild-type PSE-4 carbenicillinase has been determined to 1.95 A resolution by molecular replacement and represents the first structure of a carbenicillinase published to date. A superposition of the PSE-4 structure with that of TEM-1 shows a rms deviation of 1.3 A for 263 Calpha atoms. Most carbenicillinases are unique among class A beta-lactamases in that residue 234 is an arginine (ABL standard numbering scheme), while in all other class A enzymes this residue is a lysine. Kinetic characterization of a R234K PSE-4 mutant reveals a 50-fold reduction in k(cat)/K(m) and confirms the importance of Arg 234 for carbenicillinase activity. A comparison of the structure of the R234K mutant refined to 1.75 A resolution with the wild-type structure shows that Arg 234 stabilizes an alternate conformation of the Ser 130 side chain, not seen in other class A beta-lactamase structures. Our molecular modeling studies suggest that the position of a bound carbenicillin would be shifted relative to that of a bound benzylpenicillin in order to avoid a steric clash between the carbenicillin alpha-carboxylate group and the conserved side chain of Asn 170. The alternate conformation of the catalytic Ser 130 in wild-type PSE-4 may be involved in accommodating this shift in the bound substrate position.


Asunto(s)
Penicilinasa/química , beta-Lactamasas/química , Alanina/genética , Arginina/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Activación Enzimática , Hidrólisis , Cinética , Lisina/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Penicilinasa/metabolismo , Pseudomonas aeruginosa/enzimología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
18.
J Biol Chem ; 276(11): 8190-6, 2001 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11113120

RESUMEN

The x-ray crystallographic structure of selenomethionyl cytosine-5'-monophosphate-acylneuraminate synthetase (CMP-NeuAc synthetase) from Neisseria meningitidis has been determined at 2.0-A resolution using multiple-wavelength anomalous dispersion phasing, and a second structure, in the presence of the substrate analogue CDP, has been determined at 2.2-A resolution by molecular replacement. This work identifies the active site residues for this class of enzyme for the first time. The detailed interactions between the enzyme and CDP within the mononucleotide-binding pocket are directly observed, and the acylneuraminate-binding pocket has also been identified. A model of acylneuraminate bound to CMP-NeuAc synthetase has been constructed and provides a structural basis for understanding the mechanism of production of "activated" sialic acids. Sialic acids are key saccharide components on the surface of mammalian cells and can be virulence factors in a variety of bacterial species (e.g. Neisseria, Haemophilus, group B streptococci, etc.). As such, the identification of the bacterial CMP-NeuAc synthetase active site can serve as a starting point for rational drug design strategies.


Asunto(s)
Citidina Difosfato/química , Ácido N-Acetilneuramínico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Datos de Secuencia Molecular , N-Acilneuraminato Citidililtransferasa/química , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
19.
Biochemistry ; 39(49): 14993-5001, 2000 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-11106477

RESUMEN

Bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible epimerization at C-2 of UDP-N-acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP-N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues. ManNAc is critical for several processes in bacteria, including formation of the antiphagocytic capsular polysaccharide of pathogens such as Streptococcus pneumoniae types 19F and 19A. We have determined the X-ray structure (2.5 A) of UDP-GlcNAc 2-epimerase with bound UDP and identified a previously unsuspected structural homology with the enzymes glycogen phosphorylase and T4 phage beta-glucosyltransferase. The relationship to these phosphoglycosyl transferases is very intriguing in terms of possible similarities in the catalytic mechanisms. Specifically, this observation is consistent with the proposal that the UDP-GlcNAc 2-epimerase-catalyzed elimination and re-addition of UDP to the glycal intermediate may proceed through a transition state with significant oxocarbenium ion-like character. The homodimeric epimerase is composed of two similar alpha/beta/alpha sandwich domains with the active site located in the deep cleft at the domain interface. Comparison of the multiple copies in the asymmetric unit has revealed that the epimerase can undergo a 10 degrees interdomain rotation that is implicated in the regulatory mechanism. A structure-based sequence alignment has identified several basic residues in the active site that may be involved in the proton transfer at C-2 or stabilization of the proposed oxocarbenium ion-like transition state. This insight into the structure of the bacterial epimerase is applicable to the homologous N-terminal domain of the bifunctional mammalian UDP-GlcNAc "hydrolyzing" 2-epimerase/ManNAc kinase that catalyzes the rate-determining step in the sialic acid biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli , Uridina Difosfato/química , Secuencia de Aminoácidos , Carbohidrato Epimerasas/química , Secuencia Conservada , Cristalografía por Rayos X/métodos , Glucosiltransferasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilasas/química , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
20.
Nat Struct Biol ; 7(10): 918-25, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11017203

RESUMEN

We report the crystal structure of a class D beta-lactamase, the broad spectrum enzyme OXA-10 from Pseudomonas aeruginosa at 2.0 A resolution. There are significant differences between the overall fold observed in this structure and those of the evolutionarily related class A and class C beta-lactamases. Furthermore, the structure suggests the unique, cation mediated formation of a homodimer. Kinetic and hydrodynamic data shows that the dimer is a relevant species in solution and is the more active form of the enzyme. Comparison of the molecular details of the active sites of the class A and class C enzymes with the OXA-10 structure reveals that there is no counterpart in OXA-10 to the residues proposed to act as general bases in either of these enzymes (Glu 166 and Tyr 150, respectively). Our structures of the native and chloride inhibited forms of OXA-10 suggest that the class D enzymes have evolved a distinct catalytic mechanism for beta-lactam hydrolysis. Clinical variants of OXA-10 are also discussed in light of the structure.


Asunto(s)
beta-Lactamasas/química , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Pliegue de Proteína , Homología de Secuencia de Aminoácido , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA