Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Dis Esophagus ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38986036

RESUMEN

A preliminary report from the recent phase 3 trial of benralizumab, a monoclonal antibody that binds to interleukin-5 receptor alpha (IL5Rα), in patients with EoE revealed that medication use led to tissue eosinophil eradication but did not meet the clinical endpoint of symptom resolution. Here, we characterized the clinical, endoscopic, histologic, and transcriptional changes in patients with active EoE following benralizumab treatment. We retrospectively examined patients with EoE treated with benralizumab at the University of Utah (n = 11) and reviewed reported clinical symptoms, circulating and tissue eosinophilia, and endoscopic and histologic scores. Gene expression profiles from available esophageal tissue from benralizumab-treated patients were compared to those from patients with remission EoE (n = 5), active EoE (n = 10), and controls (n = 22). Benralizumab treatment resulted in partial symptom improvement and significant reduction in tissue eosinophilia, and endoscopic and histologic disease scoring (P < 0.01). Histologic score reductions were driven by eosinophil feature scores, while scores for epithelial features (basal cell hyperplasia and dilated intercellular spaces) were similar to those in active EoE. The gene signatures in benralizumab-treated patients mimicked those of active EoE (e.g. upregulation of POSTN, CDH26, CCL26, and downregulation of DSG1). RNA profiles and pathways support histologic findings of impaired epithelial function that persists despite benralizumab treatment. In conclusion, despite eosinophil eradication, patients treated with benralizumab had persistent epithelial injury at the histologic and transcriptional level. In this cohort, benralizumab therapy failed to eradicate inflammation and epithelial dysfunction showing that interleukin-5 receptor alpha blockade monotherapy is insufficient to control EoE.

2.
JID Innov ; 4(4): 100286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994234

RESUMEN

Basal cell carcinoma (BCC) is classified histologically into subtypes that determine treatment decisions. MicroRNAs (miRs) are short noncoding RNAs that may serve as diagnostic biomarkers. We investigated if particular miRs could distinguish BCC subtypes. We sequenced miRs from 55 archival BCC and 9 control skin specimens and then validated these miRs by qRT-PCR assay on a second BCC cohort (18 superficial, 16 nodular, 15 infiltrative) and control skin (n = 12). Expression values for individual miRs were normalized to miR-16-5p, which was the least variant among the control skin and BCC samples. We found that (i) miR-383-5p and miR-145-5p are downregulated in all BCC subtypes compared with control skin, (ii) miR-181c-5p is downregulated in superficial compared with invasive (nodular/infiltrative) BCC, and (iii) miR-22-5p and miR-708-5p are upregulated in infiltrative compared with superficial/nodular BCC and miR-30c-5p is downregulated in infiltrative compared with nodular BCC. Receiver operating characteristic analysis demonstrated excellent capacity of these miRs to discriminate between BCC and control skin (area under the curve, 0.94-0.98), whereas the capacity to discriminate between superficial and invasive subtypes was less robust (area under the curve, 0.7-0.8). Future prospective studies may determine the utility of these miRs as diagnostic biomarkers to guide biopsy and treatment of BCC.

3.
J Thromb Haemost ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969303

RESUMEN

Genome-wide platelet transcriptomics is increasingly used to uncover new aspects of platelet biology and as a diagnostic and prognostic tool. Nevertheless, platelet isolation methods for transcriptomic studies are not standardized, introducing challenges for cross-study comparisons, data integration, and replication. In this prospective multicenter study, called "Standardizing Platelet Transcriptomics for Discovery, Diagnostics, and Therapeutics in the Thrombosis and Hemostasis Community (STRIDE)" by the ISTH SSCs, we assessed how three of the most commonly used platelet isolation protocols influence metrics from next-generation bulk RNA sequencing and functional assays. Compared with washing alone, more stringent removal of leukocytes by anti-CD45 beads or PALLTM filters resulted in a sufficient quantity of RNA for next-generation sequencing and similar quality of RNA sequencing metrics. Importantly, stringent removal of leukocytes resulted in the lower relative expression of known leukocyte-specific genes and the higher relative expression of known platelet-specific genes. The results were consistent across enrolling sites, suggesting the techniques are transferrable and reproducible. Moreover, all three isolation techniques did not influence basal platelet reactivity, but agonist-induced integrin αIIbß3 activation is reduced by anti-CD45 bead isolation compared to washing alone. In conclusion, the isolation technique chosen influences genome-wide transcriptional and functional assays in platelets. These results should help the research community make informed choices about platelet isolation techniques in their own platelet studies.

4.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873189

RESUMEN

Adaptive immune resistance (AIR) is a protective process used by cancer to escape elimination by CD8+ T cells. Inhibition of immune checkpoints PD-1 and CTLA-4 specifically target Interferon-gamma (IFNγ)-driven AIR. AIR begins at the plasma membrane where tumor cell-intrinsic cytokine signaling is initiated. Thus, plasma membrane remodeling by endomembrane trafficking could regulate AIR. Herein we report that the trafficking protein ADP-Ribosylation Factor 6 (ARF6) is critical for IFNγ-driven AIR. ARF6 prevents transport of the receptor to the lysosome, augmenting IFNγR expression, tumor intrinsic IFNγ signaling and downstream expression of immunosuppressive genes. In murine melanoma, loss of ARF6 causes resistance to immune checkpoint blockade (ICB). Likewise, low expression of ARF6 in patient tumors correlates with inferior outcomes with ICB. Our data provide new mechanistic insights into tumor immune escape, defined by ARF6-dependent AIR, and support that ARF6-dependent endomembrane trafficking of the IFNγ receptor influences outcomes of ICB.

5.
Commun Biol ; 6(1): 638, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311809

RESUMEN

Autocrine and paracrine signaling regulating adipogenesis in white adipose tissue remains largely unclear. Here we used single-cell RNA-sequencing (RNA-seq) and single nuclei RNA-sequencing (snRNA-seq) to identify markers of adipose progenitor cells (APCs) and adipogenic modulators in visceral adipose tissue (VAT) of humans and mice. Our study confirmed the presence of major cellular clusters in humans and mice and established important sex and diet-specific dissimilarities in cell proportions. Here we show that bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) is a conserved marker for APCs and adipocytes in VAT in humans and mice. Further, BMPER is highly enriched in lineage negative stromal vascular cells and its expression is significantly higher in visceral compared to subcutaneous APCs in mice. BMPER expression and release peaked by day four post-differentiation in 3T3-L1 preadipocytes. We reveal that BMPER is required for adipogenesis both in 3T3-L1 preadipocytes and in mouse APCs. Together, this study identified BMPER as a positive modulator of adipogenesis.


Asunto(s)
Adipogénesis , Obesidad , Animales , Humanos , Ratones , Adipocitos , Adiposidad , Proteínas Portadoras , ARN Nuclear Pequeño
6.
Front Genet ; 14: 1192799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229187

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.

7.
Nat Aging ; 3(7): 846-865, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37231196

RESUMEN

Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Masculino , Animales , Femenino , Carcinoma Corticosuprarrenal/genética , Envejecimiento , Senescencia Celular , Transducción de Señal , Neoplasias de la Corteza Suprarrenal/genética , Microambiente Tumoral
8.
Dis Model Mech ; 16(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37183607

RESUMEN

Sphingolipidoses are a subcategory of lysosomal storage diseases (LSDs) caused by mutations in enzymes of the sphingolipid catabolic pathway. Like many LSDs, neurological involvement in sphingolipidoses leads to early mortality with limited treatment options. Given the role of myelin loss as a major contributor toward LSD-associated neurodegeneration, we investigated the pathways contributing to demyelination in a CRISPR-Cas9-generated zebrafish model of combined saposin (psap) deficiency. psap knockout (KO) zebrafish recapitulated major LSD pathologies, including reduced lifespan, reduced lipid storage, impaired locomotion and severe myelin loss; loss of myelin basic protein a (mbpa) mRNA was progressive, with no changes in additional markers of oligodendrocyte differentiation. Brain transcriptomics revealed dysregulated mTORC1 signaling and elevated neuroinflammation, where increased proinflammatory cytokine expression preceded and mTORC1 signaling changes followed mbpa loss. We examined pharmacological and genetic rescue strategies via water tank administration of the multiple sclerosis drug monomethylfumarate (MMF), and crossing the psap KO line into an acid sphingomyelinase (smpd1) deficiency model. smpd1 mutagenesis, but not MMF treatment, prolonged lifespan in psap KO zebrafish, highlighting the modulation of acid sphingomyelinase activity as a potential path toward sphingolipidosis treatment.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Esfingolipidosis , Animales , Esfingomielina Fosfodiesterasa/genética , Pez Cebra/metabolismo , Saposinas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina
9.
J Clin Invest ; 132(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194487

RESUMEN

Platelets and megakaryocytes are critical players in immune responses. Recent reports suggest infection and inflammation alter the megakaryocyte and platelet transcriptome to induce altered platelet reactivity. We determined whether nonviral sepsis induces differential platelet gene expression and reactivity. Nonviral sepsis upregulated IFN-induced transmembrane protein 3 (IFITM3), an IFN-responsive gene that restricts viral replication. As IFITM3 has been linked to clathrin-mediated endocytosis, we determined whether IFITM3 promoted endocytosis of α-granule proteins. IFN stimulation enhanced fibrinogen endocytosis in megakaryocytes and platelets from Ifitm+/+ mice, but not Ifitm-/- mice. IFITM3 overexpression or deletion in megakaryocytes demonstrated IFITM3 was necessary and sufficient to regulate fibrinogen endocytosis. Mechanistically, IFITM3 interacted with clathrin and αIIb and altered their plasma membrane localization into lipid rafts. In vivo IFN administration increased fibrinogen endocytosis, platelet reactivity, and thrombosis in an IFITM-dependent manner. In contrast, Ifitm-/- mice were completely rescued from IFN-induced platelet hyperreactivity and thrombosis. During murine sepsis, platelets from Ifitm+/+ mice demonstrated increased fibrinogen content and platelet reactivity, which was dependent on IFN-α and IFITMs. Platelets from patients with nonviral sepsis had increases in platelet IFITM3 expression, fibrinogen content, and hyperreactivity. These data identify IFITM3 as a regulator of platelet endocytosis, hyperreactivity, and thrombosis during inflammatory stress.


Asunto(s)
Endocitosis , Fibrinógeno , Proteínas de la Membrana , Sepsis , Animales , Ratones , Clatrina , Fibrinógeno/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sepsis/genética
10.
Dev Cell ; 57(15): 1866-1882.e10, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835117

RESUMEN

Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in many cancers, including lung adenocarcinoma (LUAD). The lineage-specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) control identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Loss of FoxA1/2 leads to the collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, which has been implicated in LUAD progression. Mechanistically, FoxA1/2 loss leads to aberrant NKX2-1 activity and genomic localization, which in turn actively inhibits tumorigenesis and drives alternative cellular identity programs that are associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón/genética , Animales , Transformación Celular Neoplásica , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Factor Nuclear Tiroideo 1
11.
Circ Heart Fail ; 15(3): e008910, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865514

RESUMEN

BACKGROUND: Extrinsic control of cardiomyocyte metabolism is poorly understood in heart failure (HF). FGF21 (Fibroblast growth factor 21), a hormonal regulator of metabolism produced mainly in the liver and adipose tissue, is a prime candidate for such signaling. METHODS: To investigate this further, we examined blood and tissue obtained from human subjects with end-stage HF with reduced ejection fraction at the time of left ventricular assist device implantation and correlated serum FGF21 levels with cardiac gene expression, immunohistochemistry, and clinical parameters. RESULTS: Circulating FGF21 levels were substantially elevated in HF with reduced ejection fraction, compared with healthy subjects (HF with reduced ejection fraction: 834.4 [95% CI, 628.4-1040.3] pg/mL, n=40; controls: 146.0 [86.3-205.7] pg/mL, n=20, P=1.9×10-5). There was clear FGF21 staining in diseased cardiomyocytes, and circulating FGF21 levels negatively correlated with the expression of cardiac genes involved in ketone metabolism, consistent with cardiac FGF21 signaling. FGF21 gene expression was very low in failing and nonfailing hearts, suggesting extracardiac production of the circulating hormone. Circulating FGF21 levels were correlated with BNP (B-type natriuretic peptide) and total bilirubin, markers of chronic cardiac and hepatic congestion. CONCLUSIONS: Circulating FGF21 levels are elevated in HF with reduced ejection fraction and appear to bind to the heart. The liver is likely the main extracardiac source. This supports a model of hepatic FGF21 communication to diseased cardiomyocytes, defining a potential cardiohepatic signaling circuit in human HF.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Cardíaca/genética , Humanos , Péptido Natriurético Encefálico/genética
12.
Biomaterials ; 280: 121254, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34836683

RESUMEN

Vascular access is the lifeline for hemodialysis patients and the single most important component of the hemodialysis procedure. Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients, but nearly 60% of AVFs created fail to successfully mature due to early intimal hyperplasia development and poor outward remodeling. There are currently no therapies available to prevent AVF maturation failure. First, we showed the important regulatory role of nitric oxide (NO) on AVF development by demonstrating that intimal hyperplasia development was reduced in an overexpressed endothelial nitric oxide synthase (NOS3) mouse AVF model. This supported the rationale for the potential application of NO to the AVF. Thus, we developed a self-assembled NO releasing nanomatrix gel and applied it perivascularly at the arteriovenous anastomosis immediately following rat AVF creation to investigate its therapeutic effect on AVF development. We demonstrated that the NO releasing nanomatrix gel inhibited intimal hyperplasia formation (more than 70% reduction), as well as improved vascular outward remodeling (increased vein diameter) and hemodynamic adaptation (lower wall shear stress approaching the preoperative level and less vorticity). Therefore, direct application of the NO releasing nanomatrix gel to the AVF anastomosis immediately following AVF creation may enhance AVF development, thereby providing long-term and durable vascular access for hemodialysis.


Asunto(s)
Fístula Arteriovenosa , Remodelación Vascular , Animales , Fístula Arteriovenosa/terapia , Humanos , Hiperplasia , Ratones , Óxido Nítrico , Ratas , Roedores
13.
J Intensive Care Med ; 36(3): 262-270, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31916880

RESUMEN

BACKGROUND: Cognitive impairment after sepsis is an important clinical problem. Determinants of postseptic cognitive impairment are not well understood. We thus undertook a systems biology approach to exploring a possible role for apolipoprotein E (APOE) in postseptic cognitive impairment. DESIGN: Prospective, observational cohort. SETTING: Intermountain Medical Center, a tertiary referral center in Utah. PATIENTS/PARTICIPANTS: Patients with sepsis admitted to study intensive care units. INTERVENTIONS: None. METHODS: We obtained peripheral blood for deep sequencing of RNA and followed up survivors at 6 months with a battery of cognitive instruments. We defined cognitive impairment based on the 6-month Hayling test of executive function. In our primary analysis, we employed weighted network analysis. Secondarily, we compared variation in gene expression between patients with normal versus impaired cognition. MEASUREMENTS AND MAIN RESULTS: We enrolled 40 patients, of whom 34 were follow-up eligible and 31 (91%) completed follow-up; 1 patient's RNA sample was degraded-the final analytic cohort was 30 patients. Mean Hayling test score was 5.8 (standard deviation 1.1), which represented 20% with impaired executive function. The network module containing APOE was dominated by low-expression genes, with no association on primary analysis (P = .8). Secondary analyses suggested several potential lines of future investigation, including oxidative stress. CONCLUSIONS: In this prospective pilot cohort, executive dysfunction affected 1 in 5 survivors of sepsis. The APOE gene was sparsely transcribed in peripheral leukocytes and not associated with cognitive impairment. Future lines of research are suggested.


Asunto(s)
Apolipoproteínas E/sangre , Disfunción Cognitiva , Sepsis , Cognición , Disfunción Cognitiva/diagnóstico , Humanos , Proyectos Piloto , Estudios Prospectivos , Sepsis/complicaciones
14.
Gut ; 70(5): 900-914, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32826305

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival of less than 5%. Transcriptomic analysis has identified two clinically relevant molecular subtypes of PDAC: classical and basal-like. The classical subtype is characterised by a more favourable prognosis and better response to chemotherapy than the basal-like subtype. The classical subtype also expresses higher levels of lineage specifiers that regulate endodermal differentiation, including the nuclear receptor hepatocyte nuclear factor 4 α (HNF4α). The objective of this study is to evaluate the role of HNF4α, SIX4 and SIX1 in regulating the growth and molecular subtype of PDAC. DESIGN: We manipulate the expression of HNF4α, SIX4 and SIX1 in multiple in vitro and in vivo PDAC models. We determine the consequences of manipulating these genes on PDAC growth, differentiation and molecular subtype using functional assays, gene expression analysis and cross-species comparisons with human datasets. RESULTS: We show that HNF4α restrains tumour growth and drives tumour cells toward an epithelial identity. Gene expression analysis of murine models and human tumours shows that HNF4α activates expression of genes associated with the classical subtype. HNF4α also directly represses SIX4 and SIX1, two mesodermal/neuronal lineage specifiers expressed in the basal-like subtype. Finally, SIX4 and SIX1 drive proliferation and regulate differentiation in HNF4α-negative PDAC. CONCLUSION: Our data show that HNF4α regulates the growth and molecular subtype of PDAC by multiple mechanisms, including activation of the classical gene expression programme and repression of SIX4 and SIX1, which may represent novel dependencies of the basal-like subtype.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Factor Nuclear 4 del Hepatocito/genética , Proteínas de Homeodominio/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Transactivadores/genética , Neoplasias Pancreáticas
15.
Blood ; 136(11): 1317-1329, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32573711

RESUMEN

There is an urgent need to understand the pathogenesis of coronavirus disease 2019 (COVID-19). In particular, thrombotic complications in patients with COVID-19 are common and contribute to organ failure and mortality. Patients with severe COVID-19 present with hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated with sepsis, with the major difference being increased risk of thrombosis rather than bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters platelet function to contribute to the pathophysiology of COVID-19 remains unknown. In this study, we report altered platelet gene expression and functional responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct changes in the gene-expression profile of circulating platelets of COVID-19 patients. Pathway analysis revealed differential gene-expression changes in pathways associated with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not detected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings demonstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19 pathophysiology.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Trastornos de la Coagulación Sanguínea/patología , Plaquetas/patología , Infecciones por Coronavirus/complicaciones , Neumonía Viral/complicaciones , Transcriptoma , Biomarcadores , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/metabolismo , Trastornos de la Coagulación Sanguínea/virología , Plaquetas/metabolismo , Plaquetas/virología , COVID-19 , Estudios de Casos y Controles , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/genética , Neumonía Viral/metabolismo , Neumonía Viral/virología , Pronóstico , Estudios Prospectivos , SARS-CoV-2
16.
Intensive Care Med Exp ; 7(1): 57, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31650252

RESUMEN

BACKGROUND: Septic cardiomyopathy (SCM) is common in sepsis and associated with increased morbidity and mortality. Left ventricular global longitudinal strain (LV GLS), measured by speckle tracking echocardiography, allows improved identification of impaired cardiac contractility. The peripheral blood transcriptome may be an important window into SCM pathophysiology. We therefore studied the peripheral blood transcriptome and LV GLS in a prospective cohort of patients with sepsis. RESULTS: In this single-center observational pilot study, we enrolled adult patients (age > 18) with sepsis within 48 h of admission to the ICU. SCM was defined as LV GLS > - 17% based on echocardiograms performed within 72 h of admission. We enrolled 27 patients, 24 of whom had high-quality RNA results; 18 (75%) of 24 had SCM. The group was 50% female and had a median (IQR) age of 59.5 (48.5-67.0) years and admission APACHE II score of 21.0 (16.0-32.3). Forty-six percent had septic shock. After filtering for low-expression and non-coding genes, 15,418 protein coding genes were expressed and 73 had significantly different expression between patients with vs. without SCM. In patients with SCM, 43 genes were upregulated and 30 were downregulated. Pathway analysis identified enrichment in type 1 interferon signaling (adjusted p < 10-5). CONCLUSIONS: In this hypothesis-generating study, SCM was associated with upregulation of genes in the type 1 interferon signaling pathway. Interferons are cytokines that stimulate the innate and adaptive immune response and are implicated in the early proinflammatory and delayed immunosuppression phases of sepsis. While type 1 interferons have not been implicated previously in SCM, interferon therapy (for viral hepatitis and Kaposi sarcoma) has been associated with reversible cardiomyopathy, perhaps suggesting a role for interferon signaling in SCM.

17.
Mol Metab ; 24: 44-63, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948248

RESUMEN

OBJECTIVE: Activation of the Wnt-signaling pathway is known to inhibit differentiation in adipocytes. However, there is a gap in our understanding of the transcriptional network regulated by components of the Wnt-signaling pathway during adipogenesis and in adipocytes during postnatal life. The key intracellular effectors of the Wnt-signaling pathway occur through TCF transcription factors such as TCF7L2 (transcription factor-7-like 2). Several genetic variants in proximity to TCF7L2 have been linked to type 2 diabetes through genome-wide association studies in various human populations. Our work aims to functionally characterize the adipocyte specific gene program regulated by TCF7L2 and understand how this program regulates metabolism. METHODS: We generated Tcf7l2F/F mice and assessed TCF7L2 function in isolated adipocytes and adipose specific knockout mice. ChIP-sequencing and RNA-sequencing was performed on the isolated adipocytes with control and TCF7L2 knockout cells. Adipose specific TCF7L2 knockout mice were challenged with high fat diet and assessed for body weight, glucose tolerance, and lipolysis. RESULTS: Here we report that TCF7L2 regulates adipocyte size, endocrine function, and glucose metabolism. Tcf7l2 is highly expressed in white adipose tissue, and its expression is suppressed in genetic and diet-induced models of obesity. Genome-wide distribution of TCF7L2 binding and gene expression analysis in adipocytes suggests that TCF7L2 directly regulates genes implicated in cellular metabolism and cell cycle control. When challenged with a high-fat diet, conditional deletion of TCF7L2 in adipocytes led to impaired glucose tolerance, impaired insulin sensitivity, promoted weight gain, and increased adipose tissue mass. This was accompanied by reduced expression of triglyceride hydrolase, reduced fasting-induced free fatty acid release, and adipocyte hypertrophy in subcutaneous adipose tissue. CONCLUSIONS: Together our studies support that TCF7L2 is a central transcriptional regulator of the adipocyte metabolic program by directly regulating the expression of genes involved in lipid and glucose metabolism.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Aumento de Peso/genética , Adipocitos/patología , Animales , Células Cultivadas , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
18.
J Appl Physiol (1985) ; 126(5): 1419-1429, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763167

RESUMEN

Short-term muscle disuse is characterized by skeletal muscle insulin resistance, although this response is divergent across subjects. The mechanisms regulating inactivity-induced insulin resistance between populations that are more or less susceptible to disuse-induced insulin resistance are not known. RNA sequencing was conducted on vastus lateralis muscle biopsies from subjects before and after bed rest (n = 26) to describe the transcriptome of inactivity-induced insulin resistance. Subjects were separated into Low (n = 14) or High (n = 12) Susceptibility Groups based on the magnitude of change in insulin sensitivity after 5 days of bed rest. Both groups became insulin-resistant after bed rest, and there were no differences between groups in nonmetabolic characteristics (body mass, body mass index, fat mass, and lean mass). The High Susceptibility Group had more genes altered >1.5-fold (426 high versus 391 low) and more than twofold (73 high versus 55 low). Twenty-four genes were altered more than twofold in the High Susceptibility Group that did not change in the Low Susceptibility Group. 95 gene changes correlated with the changes in insulin sensitivity; 6 of these genes changed more than twofold in the High Susceptibility Group. Participants in the High Susceptibility Group were uniquely characterized with muscle gene responses described by a decrease in pathways responsible for lipid uptake and oxidation, decreased capacity for triglyceride export (APOB), increased lipogenesis (i.e., PFKFB3, FASN), and increased amino acid export (SLC43A1). These transcriptomic data provide a comprehensive examination of pathways and genes that may be useful biomarkers, or novel targets to offset muscle disuse-induced insulin resistance. NEW & NOTEWORTHY Short-term muscle disuse results in skeletal muscle insulin resistance through mechanisms that are not fully understood. Following a 5-day bed rest intervention, subjects were divided into High and Low Susceptibility Groups to inactivity-induced insulin resistance. This was followed by a genome-wide transcriptional analysis on muscle biopsy samples to gain insight on divergent insulin sensitivity responses. Our primary finding was that the skeletal muscle of subjects who experienced the most inactivity-induced insulin resistance (high susceptibility) was characterized by a decreased preference for lipid oxidation, increased lipogenesis, and increased amino acid export.


Asunto(s)
Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Transcriptoma/genética , Transcriptoma/fisiología , Aminoácidos/genética , Aminoácidos/metabolismo , Reposo en Cama/métodos , Biomarcadores/metabolismo , Femenino , Humanos , Insulina/genética , Insulina/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Triglicéridos/genética , Triglicéridos/metabolismo
19.
J Appl Physiol (1985) ; 126(4): 894-902, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605403

RESUMEN

Short-term muscle disuse induces significant muscle loss in older adults and in some reports may be more accelerated with aging. Identifying muscle transcriptional events in response to bed rest may help identify therapeutic targets to offset muscle loss. Therefore, we compared the muscle transcriptome between young and older adults after bed rest and identified candidate targets related to changes in muscle loss. RNA was sequenced (HiSeq, Illumina; DESeq, R) from muscle biopsies obtained from young [ n = 9; 23 yr (SD 3)] and older [ n = 18; 68 yr (SD 6)] adults before and after 5-day bed rest. Significantly altered pathways in both young and old subjects relating to mechanosensing and cell adhesion (Actin Cytoskeleton Signaling, ILK Signaling, RhoA Signaling, and Integrin Signaling) were altered (activation z score) to a greater extent in old subjects. Hepatic Fibrosis/Hepatic Stellate Cell Activation was the top regulated pathway significantly altered only in the old. Fifty-one differentially regulated genes were only altered in the young after bed rest and resembled a gene expression profile like that in the old at baseline. Inflammation and muscle wasting genes (CXCL2, GADD45A) were uniquely increased in the old after bed rest, and the macrophage gene MAFB decreased in the old and correlated with the change in leg lean mass. In summary, skeletal muscle dysregulation during bed rest in the old may be driven by alterations in molecules related to fibrosis, inflammation, and cell adhesion. This information may aid in the development of mechanistic-based therapies to combat muscle atrophy during short-term disuse. NEW & NOTEWORTHY Using RNA sequencing and bioinformatics approaches, we identified that older adult skeletal muscle was characterized by dysregulated pathways associated with fibrosis, inflammation (upregulated), and cell adhesion and mechanosensing (downregulated) pathways, with a subset of genes differentially regulated in old and young muscle after bed rest that may describe predisposition to muscle loss. Unique upregulated genes only expressed in old muscle after bed rest indicated increased inflammation and muscle wasting (CXCL2, GADD45A) and decreased MAFB correlated with the change in leg lean mass.


Asunto(s)
Reposo en Cama/efectos adversos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Transcriptoma/fisiología , Adulto , Anciano , Envejecimiento/metabolismo , Envejecimiento/fisiología , Femenino , Humanos , Masculino , ARN/genética , Transducción de Señal/fisiología , Adulto Joven
20.
Elife ; 72018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30475207

RESUMEN

Changes in cancer cell identity can alter malignant potential and therapeutic response. Loss of the pulmonary lineage specifier NKX2-1 augments the growth of KRAS-driven lung adenocarcinoma and causes pulmonary to gastric transdifferentiation. Here, we show that the transcription factors FoxA1 and FoxA2 are required for initiation of mucinous NKX2-1-negative lung adenocarcinomas in the mouse and for activation of their gastric differentiation program. Foxa1/2 deletion severely impairs tumor initiation and causes a proximal shift in cellular identity, yielding tumors expressing markers of the squamocolumnar junction of the gastrointestinal tract. In contrast, we observe downregulation of FoxA1/2 expression in the squamous component of both murine and human lung adenosquamous carcinoma. Using sequential in vivo recombination, we find that FoxA1/2 loss in established KRAS-driven neoplasia originating from SPC-positive alveolar cells induces keratinizing squamous cell carcinomas. Thus, NKX2-1, FoxA1 and FoxA2 coordinately regulate the growth and identity of lung cancer in a context-specific manner.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Neoplasias Pulmonares/genética , Neoplasias Gástricas/genética , Factor Nuclear Tiroideo 1/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Adhesión Celular , Diferenciación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Fenotipo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Supervivencia , Factor Nuclear Tiroideo 1/deficiencia , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA