Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hum Genet ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866022

RESUMEN

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.

2.
Genet Med ; 26(6): 101119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38465576

RESUMEN

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.


Asunto(s)
Mutación Missense , Trastornos del Neurodesarrollo , Ubiquitina-Proteína Ligasas , Humanos , Mutación Missense/genética , Femenino , Ratones , Masculino , Animales , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Ubiquitina-Proteína Ligasas/genética , Niño , Preescolar , Fenotipo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neuronas/metabolismo , Neuronas/patología , Lactante
3.
medRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38293138

RESUMEN

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

4.
Reprod Fertil Dev ; 35(11): 589-600, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37393946

RESUMEN

CONTEXT: The Pxt1 gene encodes a male germ cell-specific protein and its overexpression results in male germ cell degeneration and male infertility in transgenic mice. AIMS: The analysis of the function of Pxt1 during mouse spermatogenesis. METHODS: The phenotype of Pxt1 knockout mice was characterised by testicular histology, assessment of semen parameters including sperm motility, and DNA fragmentation by flow cytometry. Gene expression was analysed using RT-PCR. Fertility of mutants was checked by standard breeding and competition breeding tests. KEY RESULTS: In Pxt1 -/- mice, a strong increase in the sperm DNA fragmentation index (DFI) was observed, while other sperm parameters were comparable to those of control animals. Despite enhanced DFI, mutants were fertile and able to mate in competition with wild type males. CONCLUSIONS: Pxt1 induces cell death; thus, the higher sperm DFI of mice with targeted deletion of Pxt1 suggests some function for this gene in the elimination of male germ cells with chromatin damage. IMPLICATIONS: Ablation of mouse Pxt1 results in enhanced DFI. In humans, the homologous PXT1 gene shares 74% similarity with the mouse gene; thus, it can be considered a candidate for mutation screening in patients with increased DFI.


Asunto(s)
Infertilidad Masculina , Semen , Animales , Humanos , Masculino , Ratones , Cromatina , ADN , Fragmentación del ADN , Infertilidad Masculina/patología , Ratones Noqueados , Ratones Transgénicos , Motilidad Espermática/genética , Espermatozoides/patología
5.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256937

RESUMEN

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Asunto(s)
Interferón Tipo I , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Adenosina Trifosfatasas/genética , Drosophila melanogaster , Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica
7.
Nat Commun ; 14(1): 2114, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055432

RESUMEN

Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.


Asunto(s)
Glomerulonefritis Membranosa , Podocitos , Animales , Ratones , Glomerulonefritis Membranosa/genética , Glomérulos Renales , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Ubiquitina Tiolesterasa/genética
8.
Front Immunol ; 13: 982786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275769

RESUMEN

Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described. Here, we establish that IP impairment leads to proteotoxic stress and triggers the unfolded and integrated stress responses in mouse and human microglia models. Using proteomic analysis, we demonstrate that IP deficiency in microglia results in profound alterations of the ubiquitin-modified proteome among which proteins involved in the regulation of stress and immune responses. In line with this, molecular analysis revealed chronic activation of NF-κB signaling in IP-deficient microglia without further stimulus. In addition, we show that IP impairment alters microglial function based on markers for phagocytosis and motility. At the molecular level IP impairment activates interferon signaling promoted by the activation of the cytosolic stress response protein kinase R. The presented data highlight the importance of IP function for the proteostatic potential as well as for precision proteolysis to control stress and immune signaling in microglia function.


Asunto(s)
Microglía , FN-kappa B , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Proteómica , Fagocitosis , Proteínas Quinasas/metabolismo , Interferones/metabolismo , Ubiquitinas/metabolismo
9.
Mol Metab ; 62: 101518, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35636710

RESUMEN

OBJECTIVE: Regulation of proteasomal activity is an essential component of cellular proteostasis and function. This is evident in patients with mutations in proteasome subunits and associated regulators, who suffer from proteasome-associated autoinflammatory syndromes (PRAAS). These patients display lipodystrophy and fevers, which may be partly related to adipocyte malfunction and abnormal thermogenesis in adipose tissue. However, the cell-intrinsic pathways that could underlie these symptoms are unclear. Here, we investigate the impact of two proteasome subunits implicated in PRAAS, Psmb4 and Psmb8, on differentiation, function and proteostasis of brown adipocytes. METHODS: In immortalized mouse brown pre-adipocytes, levels of Psmb4, Psmb8, and downstream effectors genes were downregulated through reverse transfection with siRNA. Adipocytes were differentiated and analyzed with various assays of adipogenesis, lipogenesis, lipolysis, inflammation, and respiration. RESULTS: Loss of Psmb4, but not Psmb8, disrupted proteostasis and adipogenesis. Proteasome function was reduced upon Psmb4 loss, but partly recovered by the activation of Nuclear factor, erythroid-2, like-1 (Nfe2l1). In addition, cells displayed higher levels of surrogate inflammation and stress markers, including Activating transcription factor-3 (Atf3). Simultaneous silencing of Psmb4 and Atf3 lowered inflammation and restored adipogenesis. CONCLUSIONS: Our study shows that Psmb4 is required for adipocyte development and function in cultured adipocytes. These results imply that in humans with PSMB4 mutations, PRAAS-associated lipodystrophy is partly caused by disturbed adipogenesis. While we uncover a role for Nfe2l1 in the maintenance of proteostasis under these conditions, Atf3 is a key effector of inflammation and blocking adipogenesis. In conclusion, our work highlights how proteasome dysfunction is sensed and mitigated by the integrated stress response in adipocytes with potential relevance for PRAAS patients and beyond.


Asunto(s)
Adipogénesis , Lipodistrofia , Adipocitos Marrones/metabolismo , Adipogénesis/genética , Animales , Inflamación/metabolismo , Lipodistrofia/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo
10.
J Cell Mol Med ; 25(14): 6786-6799, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34132031

RESUMEN

Uncovering potential new targets involved in pancreatitis may permit the development of new therapies and improvement of patient's outcome. Acute pancreatitis is a primarily sterile disease characterized by a severe systemic inflammatory response associated with extensive necrosis and a mortality rate of up to 24%. Considering that one of the reported disease mechanisms comprises the endoplasmic reticulum (ER) stress response and that the immunoproteasome is a key regulator to prevent proteotoxic stress in an inflammatory context, we investigated its role in acute pancreatitis. In this study, we demonstrate that immunoproteasome deficiency by deletion of the ß5i/LMP7-subunit leads to persistent pancreatic damage. Interestingly, immunoproteasome-deficient mice unveil increased activity of pancreatic enzymes in the acute disease phase as well as higher secretion of Interleukin-6 and transcript expression of the Interleukin IL-1ß, IFN-ß cytokines and the CXCL-10 chemokine. Cell death was increased in immunoproteasome-deficient mice, which appears to be due to the increased accumulation of ubiquitin-protein conjugates and prolonged unfolded protein response. Accordingly, our findings suggest that the immunoproteasome plays a protective role in acute pancreatitis via its role in the clearance of damaged proteins and the balance of ER stress responses in pancreatic acini and in macrophages cytokine production.


Asunto(s)
Cisteína Endopeptidasas/genética , Pancreatitis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Muerte Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Cisteína Endopeptidasas/metabolismo , Femenino , Eliminación de Gen , Interferón beta/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo , Ubiquitinación
11.
Biomolecules ; 11(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466553

RESUMEN

The ubiquitin-proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.


Asunto(s)
Leucocitos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Presentación de Antígeno , Humanos , Complejo de la Endopetidasa Proteasomal/química , Proteostasis , Transducción de Señal , Ubiquitina/química
12.
Front Immunol ; 10: 2756, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827472

RESUMEN

Type I interferonopathies cover a phenotypically heterogeneous group of rare genetic diseases including the recently described proteasome-associated autoinflammatory syndromes (PRAAS). By definition, PRAAS are caused by inherited and/or de novo loss-of-function mutations in genes encoding proteasome subunits such as PSMB8, PSMB9, PSMB7, PSMA3, or proteasome assembly factors including POMP and PSMG2, respectively. Disruption of any of these subunits results in perturbed intracellular protein homeostasis including accumulation of ubiquitinated proteins which is accompanied by a type I interferon (IFN) signature. The observation that, similarly to pathogens, proteasome dysfunctions are potent type I IFN inducers is quite unexpected and, up to now, the underlying molecular mechanisms of this process remain largely unknown. One promising candidate for triggering type I IFN under sterile conditions is the unfolded protein response (UPR) which is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) (also referred to as ER stress). The recent observation that the UPR is engaged in subjects carrying POMP mutations strongly suggests its possible implication in the cause-and-effect relationship between proteasome impairment and interferonopathy onset. The purpose of this present review is therefore to discuss the possible role of the UPR in the pathogenesis of PRAAS. We will particularly focus on pathways initiated by the four ER-membrane proteins ATF6, PERK, IRE1-α, and TCF11/Nrf1 which undergo activation under proteasome inhibition. An overview of the current understanding of the mechanisms and potential cross-talk between the UPR and inflammatory signaling casacades is provided to convey a more integrated picture of the pathophysiology of PRAAS and shed light on potential biomarkers and therapeutic targets.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Retículo Endoplásmico/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Respuesta de Proteína Desplegada/inmunología , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Enfermedades Autoinmunes/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Interferón Tipo I/genética , Mutación/genética , Factor 1 Relacionado con NF-E2/genética , Complejo de la Endopetidasa Proteasomal/genética , Multimerización de Proteína/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Cross-Talk , Síndrome , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
13.
Front Immunol ; 10: 2900, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921161

RESUMEN

Proteostasis is critical for cells to maintain the balance between protein synthesis, quality control, and degradation. This is particularly important for myeloid cells of the central nervous system as their immunological function relies on proper intracellular protein turnover by the ubiquitin-proteasome system. Accordingly, disruption of proteasome activity due to, e.g., loss-of-function mutations within genes encoding proteasome subunits, results in systemic autoinflammation. On the molecular level, pharmacological inhibition of proteasome results in endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR) as well as an induction of type I interferons (IFN). Nevertheless, our understanding as to whether and to which extent UPR signaling regulates type I IFN response is limited. To address this issue, we have tested the effects of proteasome dysfunction upon treatment with proteasome inhibitors in primary murine microglia and microglia-like cell line BV-2. Our data show that proteasome impairment by bortezomib is a stimulus that activates all three intracellular ER-stress transducers activation transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and inositol-requiring protein 1 alpha (IRE1α), causing a full activation of the UPR. We further demonstrate that impaired proteasome activity in microglia cells triggers an induction of IFNß1 in an IRE1-dependent manner. An inhibition of the IRE1 endoribonuclease activity significantly attenuates TANK-binding kinase 1-mediated activation of type I IFN. Moreover, interfering with TANK-binding kinase 1 activity also compromised the expression of C/EBP homologous protein 10, thereby emphasizing a multilayered interplay between UPR and type IFN response pathway. Interestingly, the induced protein kinase R-like endoplasmic reticulum kinase-activation transcription factor 4-C/EBP homologous protein 10 and IRE1-X-box-binding protein 1 axes caused a significant upregulation of proinflammatory cytokine interleukin 6 expression that exacerbates STAT1/STAT3 signaling in cells with dysfunctional proteasomes. Altogether, these findings indicate that proteasome impairment disrupts ER homeostasis and triggers a complex interchange between ER-stress sensors and type I IFN signaling, thus inducing in myeloid cells a state of chronic inflammation.


Asunto(s)
Encéfalo/inmunología , Endorribonucleasas/inmunología , Interferón Tipo I/inmunología , Células Mieloides/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Inhibidores de Proteasoma/farmacología , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Encéfalo/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Humanos , Ratones , Microglía/inmunología , Microglía/patología , Células Mieloides/patología , Células THP-1 , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA