Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Exp Hematol ; : 104587, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074529

RESUMEN

A diverse array of protocols have been established for the directed differentiation of human pluripotent stem cells (hPSCs) into a variety of cell types, including blood cells, for modeling development and disease, and for the development of cell-based therapeutics. These protocols recapitulate various signaling requirements essential for the establishment of the hematopoietic systems during embryonic development. However, in many instances the functional properties of those progenitors, and their relevance to human development, remains unclear. The human embryo, much like other vertebrate model organisms, generates hematopoietic cells via successive anatomical location- and time-specific waves, each yielding cells with distinct functional and molecular characteristics. Each of these progenitor "waves" is characterized at the time of emergence of the direct hematopoietic progenitor in the vasculature, the hemogenic endothelial cell (HEC). Critically, despite decades of study in model organisms, the origin(s) of each of these HEC populations remains unclear. Fortunately, through the directed differentiation of hPSCs, recent insights have been made into the earliest origins of each HEC population, revealing that each arises from transcriptionally and phenotypically distinct subsets of nascent mesoderm. Here, we outline the protocols to generate each mesodermal and HEC population, via the formation of embryoid bodies (EBs) and subsequent stage-specific signal manipulation. Through implementation of these discrete signal manipulations, it is possible to obtain human HEC populations that are exclusively extra-embryonic-like or exclusively intra-embryonic-like, enabling comparative developmental biology studies or specific translational applications.

2.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594587

RESUMEN

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Asunto(s)
Desarrollo Embrionario , Receptores de IgG , Humanos , Desarrollo Embrionario/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Hemangioblastos/metabolismo , Hemangioblastos/citología , Diferenciación Celular , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Linaje de la Célula , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Transcriptoma , Perfilación de la Expresión Génica , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología
3.
Exp Hematol ; 132: 104178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340948

RESUMEN

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Humanos , Eritropoyesis/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Transducción de Señal , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
Nat Cell Biol ; 25(8): 1135-1145, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460694

RESUMEN

Definitive haematopoietic stem and progenitor cells (HSPCs) generate erythroid, lymphoid and myeloid lineages. HSPCs are produced in the embryo via transdifferentiation of haemogenic endothelial cells in the aorta-gonad-mesonephros (AGM). HSPCs in the AGM are heterogeneous in differentiation and proliferative output, but how these intrinsic differences are acquired remains unanswered. Here we discovered that loss of microRNA (miR)-128 in zebrafish leads to an expansion of HSPCs in the AGM with different cell cycle states and a skew towards erythroid and lymphoid progenitors. Manipulating miR-128 in differentiating haemogenic endothelial cells, before their transition to HSPCs, recapitulated the lineage skewing in both zebrafish and human pluripotent stem cells. miR-128 promotes Wnt and Notch signalling in the AGM via post-transcriptional repression of the Wnt inhibitor csnk1a1 and the Notch ligand jag1b. De-repression of cskn1a1 resulted in replicative and erythroid-biased HSPCs, whereas de-repression of jag1b resulted in G2/M and lymphoid-biased HSPCs with long-term consequence on the respective blood lineages. We propose that HSPC heterogeneity arises in the AGM endothelium and is programmed in part by Wnt and Notch signalling.


Asunto(s)
Hemangioblastos , MicroARNs , Animales , Humanos , Pez Cebra/genética , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Endotelio , MicroARNs/metabolismo , Hematopoyesis/genética
6.
Stem Cell Res ; 62: 102808, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569347

RESUMEN

To achieve efficient, reproducible differentiation of human pluripotent stem cells (hPSCs) towards specific hematopoietic cell-types, a comprehensive understanding of the necessary cell signaling and developmental trajectories involved is required. Previous studies have identified the mesodermal progenitors of extra-embryonic-like and intra-embryonic-like hemogenic endothelium (HE), via stage-specific WNT and ACTIVIN/NODAL, with GYPA/GYPB (CD235a/b) expression serving as a positive selection marker for mesoderm harboring exclusively extra-embryonic-like hemogenic potential. However, a positive mesodermal cell-surface marker with exclusively intra-embryonic-like hemogenic potential has not been identified. Recently, we reported that early mesodermal expression of CDX4 critically regulates definitive HE specification, suggesting that CDX4 may act in a cell-autonomous manner during hematopoietic development. To identify CDX4+ mesoderm, we performed single cell (sc)RNAseq on hPSC-derived mesodermal cultures, revealing CDX4hi expressing mesodermal populations were uniquely enriched in the non-classical MHC-Class-1 receptor CD1D. Flow cytometry demonstrated approximately 60% of KDR+CD34-CD235a- mesoderm was CD1d+, and CDX4 was robustly enriched within CD1d+ mesoderm. Critically, only CD1d+ mesoderm harbored CD34+ HOXA+ HE with multilineage erythroid-myeloid-lymphoid potential. Thus, CDX4+CD1d+ expression within early mesoderm demarcates an early progenitor of HE. These insights may be used for further study of human hematopoietic development and improve hematopoietic differentiation conditions for regenerative medicine applications.


Asunto(s)
Hemangioblastos , Células Madre Pluripotentes , Antígenos CD1d/metabolismo , Antígenos CD34/metabolismo , Diferenciación Celular/fisiología , Glicoforinas/metabolismo , Hemangioblastos/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/metabolismo , Células Madre Pluripotentes/metabolismo
7.
Nat Cell Biol ; 24(5): 616-624, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484246

RESUMEN

The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. During embryonic development, HSCs derive from haemogenic endothelium (HE) in a NOTCH- and retinoic acid (RA)-dependent manner. Although a WNT-dependent (WNTd) patterning of nascent hPSC mesoderm specifies clonally multipotent intra-embryonic-like HOXA+ definitive HE, this HE is functionally unresponsive to RA. Here we show that WNTd mesoderm, before HE specification, is actually composed of two distinct KDR+ CD34neg populations. CXCR4negCYP26A1+ mesoderm gives rise to HOXA+ multilineage definitive HE in an RA-independent manner, whereas CXCR4+ ALDH1A2+ mesoderm gives rise to HOXA+ multilineage definitive HE in a stage-specific, RA-dependent manner. Furthermore, both RA-independent (RAi) and RA-dependent (RAd) HE harbour transcriptional similarity to distinct populations found in the early human embryo, including HSC-competent HE. This revised model of human haematopoietic development provides essential resolution to the regulation and origins of the multiple waves of haematopoiesis. These insights provide the basis for the generation of specific haematopoietic populations, including the de novo specification of HSCs.


Asunto(s)
Hemangioblastos , Células Madre Pluripotentes , Diferenciación Celular/fisiología , Linaje de la Célula , Femenino , Hematopoyesis , Humanos , Embarazo , Tretinoina/farmacología
8.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35178561

RESUMEN

Tissue-resident macrophages are increasingly recognized as important determinants of organ homeostasis, tissue repair, remodeling and regeneration. Although the ontogeny and function of tissue-resident macrophages has been identified as distinct from postnatal hematopoiesis, the inability to specify, in vitro, similar populations that recapitulate these developmental waves has limited our ability to study their function and potential for regenerative applications. We took advantage of the concept that tissue-resident macrophages and monocyte-derived macrophages originate from distinct extra-embryonic and definitive hematopoietic lineages to devise a system to generate pure cultures of macrophages that resemble tissue-resident or monocyte-derived subsets. We demonstrate that human pluripotent stem cell-derived extra-embryonic-like and intra-embryonic-like hematopoietic progenitors differentiate into morphologically, transcriptionally and functionally distinct macrophage populations. Single-cell RNA sequencing of developing and mature cultures uncovered distinct developmental trajectories and gene expression programs of macrophages derived from extra-embryonic-like and intra-embryonic-like hematopoietic progenitors. These findings establish a resource for the generation of human tissue resident-like macrophages to study their specification and function under defined conditions and to explore their potential use in tissue engineering and regenerative medicine applications.


Asunto(s)
Macrófagos , Células Madre Pluripotentes , Diferenciación Celular/genética , Hematopoyesis , Homeostasis , Humanos , Macrófagos/metabolismo
9.
Blood Adv ; 4(12): 2717-2722, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32559291

RESUMEN

Dyskeratosis congenita (DC) is a pediatric bone marrow failure syndrome caused by germline mutations in telomere biology genes. Mutations in DKC1 (the most commonly mutated gene in DC), the 3' region of TERC, and poly(A)-specific ribonuclease (PARN) cause reduced levels of the telomerase RNA component (TERC) by reducing its stability and accelerating TERC degradation. We have previously shown that depleting wild-type DKC1 levels by RNA interference or expression of the disease-associated A353V mutation in the DKC1 gene leads to decay of TERC, modulated by 3'-end oligoadenylation by noncanonical poly(A) polymerase 5 (PAPD5) followed by 3' to 5' degradation by EXOSC10. Furthermore, the constitutive genetic silencing of PAPD5 is sufficient to rescue TERC levels, restore telomerase function, and elongate telomeres in DKC1_A353V mutant human embryonic stem cells (hESCs). Here, we tested a novel PAPD5/7 inhibitor (RG7834), which was originally discovered in screens against hepatitis B viral loads in hepatic cells. We found that treatment with RG7834 rescues TERC levels, restores correct telomerase localization in DKC1 and PARN-depleted cells, and is sufficient to elongate telomeres in DKC1_A353V hESCs. Finally, treatment with RG7834 significantly improved definitive hematopoietic potential from DKC1_A353V hESCs, indicating that the chemical inhibition of PAPD5 is a potential therapy for patients with DC and reduced TERC levels.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Proteínas de Ciclo Celular/genética , Niño , Proteínas Cromosómicas no Histona , ADN Polimerasa Dirigida por ADN , Disqueratosis Congénita/genética , Disqueratosis Congénita/terapia , Exorribonucleasas , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Hematopoyesis , Humanos , Mutación , Proteínas Nucleares/genética , ARN Nucleotidiltransferasas , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo
10.
Dev Cell ; 53(2): 229-239.e7, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197069

RESUMEN

Natural killer (NK) cells are a critical component of the innate immune system. However, their ontogenic origin has remained unclear. Here, we report that NK cell potential first arises from Hoxaneg/low Kit+CD41+CD16/32+ hematopoietic-stem-cell (HSC)-independent erythro-myeloid progenitors (EMPs) present in the murine yolk sac. EMP-derived NK cells and primary fetal NK cells, unlike their adult counterparts, exhibit robust degranulation in response to stimulation. Parallel studies using human pluripotent stem cells (hPSCs) revealed that HOXAneg/low CD34+ progenitors give rise to NK cells that, similar to murine EMP-derived NK cells, harbor a potent cytotoxic degranulation bias. In contrast, hPSC-derived HOXA+ CD34+ progenitors, as well as human cord blood CD34+ cells, give rise to NK cells that exhibit an attenuated degranulation response but robustly produce inflammatory cytokines. Collectively, our studies identify an extra-embryonic origin of potently cytotoxic NK cells, suggesting that ontogenic origin is a relevant factor in designing hPSC-derived adoptive immunotherapies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Células Precursoras Eritroides/citología , Células Madre Hematopoyéticas/citología , Células Asesinas Naturales/patología , Células Progenitoras Mieloides/citología , Animales , Células Madre Embrionarias/metabolismo , Células Precursoras Eritroides/metabolismo , Femenino , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Células Progenitoras Mieloides/metabolismo , Saco Vitelino
11.
Blood ; 133(12): 1308-1312, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30728146

RESUMEN

Reduced levels of TERC, the telomerase RNA component, cause dyskeratosis congenita (DC) in patients harboring mutations in TERC, PARN, NOP10, NHP2, NAF1, or DKC1. Inhibition of the noncanonical poly(A) polymerase PAPD5, or the exosome RNA degradation complex, partially restores TERC levels in immortalized DKC1 mutant cells, but it remains unknown if modulation of posttranscriptional processing of TERC could improve hematopoietic output in DC. We used human embryonic stem cells (hESCs) with a common dyskerin mutation (DKC1_A353V), which have defective telomere maintenance and reduced definitive hematopoietic potential, to understand the effects of reducing EXOSC3 activity, or silencing PAPD5-mediated oligoadenylation, on hematopoietic progenitor specification and function in DC. Reduction of EXOSC3 or PAPD5 levels in DKC1 mutant hESCs led to functional improvements in TERC levels and telomerase activity, with concomitant telomere elongation and reduced levels of DNA damage signaling. Interestingly, the silencing of PAPD5, but not EXOSC3, significantly restored definitive hematopoietic potential in DKC1 mutant cells. Mechanistically, we show that PAPD5 inhibition is sustained in differentiated CD34+ cells, with a concomitant increase in mature, functional, forms of TERC, indicating that regulation of PAPD5 is a potential strategy to reverse hematologic dysfunction in DC patients.


Asunto(s)
Disqueratosis Congénita/prevención & control , Células Madre Embrionarias/citología , Hematopoyesis , Mutación , ARN Nucleotidiltransferasas/antagonistas & inhibidores , Procesamiento Postranscripcional del ARN , ARN/metabolismo , Telomerasa/metabolismo , Proteínas de Ciclo Celular/genética , Disqueratosis Congénita/metabolismo , Disqueratosis Congénita/patología , Células Madre Embrionarias/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Humanos , Proteínas Nucleares/genética , ARN/genética , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Telomerasa/genética , Telómero
12.
Stem Cell Reports ; 11(6): 1324-1326, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540960

RESUMEN

Being able to summarize properly your work is not an easy task. But learning the skill of writing a good abstract is very important, as it can open many doors, including the possibility to be selected as a speaker at conferences. As meeting abstract reviewers, here we are writing to give you insights into the abstract review process and insiders' tips to help increase your chances of landing on that podium.


Asunto(s)
Indización y Redacción de Resúmenes , Congresos como Asunto , Escritura
13.
J Vis Exp ; (129)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155741

RESUMEN

One of the major goals for regenerative medicine is the generation and maintenance of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs). Until recently, efforts to differentiate hPSCs into HSCs have predominantly generated hematopoietic progenitors that lack HSC potential, and instead resemble yolk sac hematopoiesis. These resulting hematopoietic progenitors may have limited utility for in vitro disease modeling of various adult hematopoietic disorders, particularly those of the lymphoid lineages. However, we have recently described methods to generate erythro-myelo-lymphoid multilineage definitive hematopoietic progenitors from hPSCs using a stage-specific directed differentiation protocol, which we outline here. Through enzymatic dissociation of hPSCs on basement membrane matrix-coated plasticware, embryoid bodies (EBs) are formed. EBs are differentiated to mesoderm by recombinant BMP4, which is subsequently specified to the definitive hematopoietic program by the GSK3ß inhibitor, CHIR99021. Alternatively, primitive hematopoiesis is specified by the PORCN inhibitor, IWP2. Hematopoiesis is further driven through the addition of recombinant VEGF and supportive hematopoietic cytokines. The resulting hematopoietic progenitors generated using this method have the potential to be used for disease and developmental modeling, in vitro.


Asunto(s)
Técnicas Citológicas/métodos , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes/citología , Diferenciación Celular/fisiología , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo
14.
Blood ; 129(22): 2988-2992, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28408465

RESUMEN

The generation of hematopoietic stem cells from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. Achieving this goal is complicated by our incomplete understanding of the mechanism regulating definitive hematopoietic specification. We used our stage-specific hPSC differentiation method to obtain and identify, via CD235a expression, mesoderm harboring exclusively primitive or definitive hematopoietic potential to understand the genetic regulation of definitive hematopoietic specification. Whole-transcriptome gene expression analyses on WNT-dependent KDR+CD235a- definitive hematopoietic mesoderm and WNT-independent KDR+CD235a+ primitive hematopoietic mesoderm revealed strong CDX gene expression within definitive hematopoietic mesoderm. Temporal expression analyses revealed that CDX4 was expressed exclusively within definitive hematopoietic KDR+CD235a- mesoderm in a WNT- and fibroblast growth factor-dependent manner. We found that exogenous CDX4 expression exclusively during mesoderm specification resulted in a >90% repression in primitive hematopoietic potential, but conferred fivefold greater definitive hematopoietic potential, similar to that observed following WNT stimulation. In contrast, CDX4 knockout hPSCs had intact primitive hematopoietic potential, but exhibited a fivefold decrease in multilineage definitive hematopoietic potential. Taken together, these findings indicate that CDX4 is a critical transcription factor in the regulation of human definitive hematopoietic specification, and provides a mechanistic basis for WNT-mediated definitive hematopoietic specification from hPSCs.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Celular , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Glicoforinas/metabolismo , Hematopoyesis/genética , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Humanos , Mesodermo/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
15.
Nat Rev Mol Cell Biol ; 18(1): 56-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27876786

RESUMEN

Human pluripotent stem cells (hPSCs) provide an unparalleled opportunity to establish in vitro differentiation models that will transform our approach to the study of human development. In the case of the blood system, these models will enable investigation of the earliest stages of human embryonic haematopoiesis that was previously not possible. In addition, they will provide platforms for studying the origins of human blood cell diseases and for generating de novo haematopoietic stem and progenitor cell populations for cell-based regenerative therapies.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Células Madre Pluripotentes/fisiología
16.
Methods ; 101: 65-72, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26439174

RESUMEN

The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) remains a major goal for regenerative medicine and disease modeling. However, hPSC differentiation cultures produce mostly hematopoietic progenitors belonging to the embryonic HSC-independent hematopoietic program, which may not be relevant or accurate for modeling normal and disease-state adult hematopoietic processes. Through a stage-specific directed differentiation approach, it is now possible to generate exclusively definitive hematopoietic progenitors from hPSCs showing characteristics of the more developmentally advanced fetal hematopoiesis. Here, we summarize recent efforts at generating hPSC-derived definitive hematopoiesis through embryoid body differentiation under defined conditions. Embryoid bodies are generated through enzymatic dissociation of hPSCs from matrigel-coated plasticware, followed by recombinant BMP4, driving mesoderm specification. Definitive hematopoiesis is specified by a GSK3ß-inhibitor, followed by recombinant VEGF and supportive hematopoietic cytokines. The CD34+ cells obtained using this method are then suitable for hematopoietic assays for definitive hematopoietic potential.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/fisiología , Células Madre Pluripotentes/fisiología , Antígenos CD34/metabolismo , Proteína Morfogenética Ósea 4/fisiología , Técnicas de Cultivo de Célula , Línea Celular , Citocinas/fisiología , Cuerpos Embrioides/citología , Cuerpos Embrioides/fisiología , Hemangioblastos/fisiología , Hematopoyesis , Humanos , Factor A de Crecimiento Endotelial Vascular/fisiología
17.
Nat Cell Biol ; 17(5): 580-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25915127

RESUMEN

The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) will depend on the accurate recapitulation of embryonic haematopoiesis. In the early embryo, HSCs develop from the haemogenic endothelium (HE) and are specified in a Notch-dependent manner through a process named endothelial-to-haematopoietic transition (EHT). As HE is associated with arteries, it is assumed that it represents a subpopulation of arterial vascular endothelium (VE). Here we demonstrate at a clonal level that hPSC-derived HE and VE represent separate lineages. HE is restricted to the CD34(+)CD73(-)CD184(-) fraction of day 8 embryoid bodies and it undergoes a NOTCH-dependent EHT to generate RUNX1C(+) cells with multilineage potential. Arterial and venous VE progenitors, in contrast, segregate to the CD34(+)CD73(med)CD184(+) and CD34(+)CD73(hi)CD184(-) fractions, respectively. Together, these findings identify HE as distinct from VE and provide a platform for defining the signalling pathways that regulate their specification to functional HSCs.


Asunto(s)
Arterias/fisiología , Diferenciación Celular , Linaje de la Célula , Células Progenitoras Endoteliales/fisiología , Células Madre Hematopoyéticas/fisiología , Células Madre Multipotentes/fisiología , Células Madre Pluripotentes/fisiología , 5'-Nucleotidasa/deficiencia , Antígenos CD34/metabolismo , Arterias/citología , Arterias/metabolismo , Biomarcadores/metabolismo , Línea Celular , Separación Celular/métodos , Técnicas de Cocultivo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Progenitoras Endoteliales/metabolismo , Proteínas Ligadas a GPI/deficiencia , Células Madre Hematopoyéticas/metabolismo , Humanos , Microscopía por Video , Células Madre Multipotentes/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Células Precursoras de Linfocitos T/fisiología , Receptores CXCR5/deficiencia , Receptores Notch/metabolismo , Transducción de Señal , Factores de Tiempo , Venas/citología , Venas/fisiología
18.
Nat Biotechnol ; 32(6): 554-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24837661

RESUMEN

Efforts to derive hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) are complicated by the fact that embryonic hematopoiesis consists of two programs, primitive and definitive, that differ in developmental potential. As only definitive hematopoiesis generates HSCs, understanding how this program develops is essential for being able to produce this cell population in vitro. Here we show that both hematopoietic programs transition through hemogenic endothelial intermediates and develop from KDR(+)CD34(-)CD144(-) progenitors that are distinguished by CD235a expression. Generation of primitive progenitors (KDR(+)CD235a(+)) depends on stage-specific activin-nodal signaling and inhibition of the Wnt-ß-catenin pathway, whereas specification of definitive progenitors (KDR(+)CD235a(-)) requires Wnt-ß-catenin signaling during this same time frame. Together, these findings establish simple selective differentiation strategies for the generation of primitive or definitive hematopoietic progenitors by Wnt-ß-catenin manipulation, and in doing so provide access to enriched populations for future studies on hPSC-derived hematopoietic development.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Vía de Señalización Wnt/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Ratones
20.
Cell Rep ; 2(6): 1722-35, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23219550

RESUMEN

The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Células Madre Pluripotentes/metabolismo , Células Precursoras de Linfocitos T/metabolismo , Transducción de Señal/fisiología , Linfocitos T/metabolismo , Línea Celular , Humanos , Células Madre Pluripotentes/citología , Células Precursoras de Linfocitos T/citología , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA