Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255422

RESUMEN

Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.


Asunto(s)
Encéfalo/fisiología , Linaje de la Célula , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Encéfalo/citología , Drosophila melanogaster/genética , Larva , Neuronas/citología
2.
Nucleic Acids Res ; 48(8): 4344-4356, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32187363

RESUMEN

The genome is the blueprint for an organism. Interrogating the genome, especially locating critical cis-regulatory elements, requires deletion analysis. This is conventionally performed using synthetic constructs, making it cumbersome and non-physiological. Thus, we created Cas9-mediated Arrayed Mutagenesis of Individual Offspring (CAMIO) to achieve comprehensive analysis of a targeted region of native DNA. CAMIO utilizes CRISPR that is spatially restricted to generate independent deletions in the intact Drosophila genome. Controlled by recombination, a single guide RNA is stochastically chosen from a set targeting a specific DNA region. Combining two sets increases variability, leading to either indels at 1-2 target sites or inter-target deletions. Cas9 restriction to male germ cells elicits autonomous double-strand-break repair, consequently creating offspring with diverse mutations. Thus, from a single population cross, we can obtain a deletion matrix covering a large expanse of DNA at both coarse and fine resolution. We demonstrate the ease and power of CAMIO by mapping 5'UTR sequences crucial for chinmo's post-transcriptional regulation.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila/genética , Edición Génica , Mutagénesis , Regiones no Traducidas 5' , Animales , Animales Modificados Genéticamente , Proteína 9 Asociada a CRISPR , Proteínas de Drosophila/genética , Genoma de los Insectos , Mutación INDEL , Masculino , Proteínas del Tejido Nervioso/genética , Espermatozoides/metabolismo
3.
Elife ; 92020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913118

RESUMEN

Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.


Asunto(s)
Envejecimiento/genética , Perfilación de la Expresión Génica , Expresión Génica , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/citología , Transcriptoma , Animales , Encéfalo/metabolismo , Proteínas CELF/genética , Técnicas de Sustitución del Gen , Ratones , RNA-Seq , Ganglio Espiral de la Cóclea/embriología , Ganglio Espiral de la Cóclea/metabolismo
4.
Elife ; 82019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31545163

RESUMEN

Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/ß' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células-Madre Neurales/fisiología , Neuronas/fisiología , Factores de Transcripción/metabolismo , Animales , Drosophila , Perfilación de la Expresión Génica
5.
Elife ; 82019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30977723

RESUMEN

Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases, we provide an extensive resource for further investigation of mouse neuronal cell types.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/citología , Perfilación de la Expresión Génica , Neuronas/fisiología , Animales , Ratones
6.
PLoS Genet ; 14(7): e1007552, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30063705

RESUMEN

In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular/genética , Células Ciliadas Auditivas/fisiología , Proteínas con Homeodominio LIM/metabolismo , Regeneración/genética , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica/métodos , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética
7.
Curr Biol ; 27(9): 1303-1313, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28434858

RESUMEN

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Esteroides/metabolismo , Animales , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factor de Células Madre/metabolismo
8.
Cell Rep ; 16(10): 2711-2722, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568566

RESUMEN

Synaptic scaling is a form of homeostatic plasticity driven by transcription-dependent changes in AMPA-type glutamate receptor (AMPAR) trafficking. To uncover the pathways involved, we performed a cell-type-specific screen for transcripts persistently altered during scaling, which identified the µ subunit (µ3A) of the adaptor protein complex AP-3A. Synaptic scaling increased µ3A (but not other AP-3 subunits) in pyramidal neurons and redistributed dendritic µ3A and AMPAR to recycling endosomes (REs). Knockdown of µ3A prevented synaptic scaling and this redistribution, while overexpression (OE) of full-length µ3A or a truncated µ3A that cannot interact with the AP-3A complex was sufficient to drive AMPAR to REs. Finally, OE of µ3A acted synergistically with GRIP1 to recruit AMPAR to the dendritic membrane. These data suggest that excess µ3A acts independently of the AP-3A complex to reroute AMPAR to RE, generating a reservoir of receptors essential for the regulated recruitment to the synaptic membrane during scaling up.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Endosomas/metabolismo , Homeostasis , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Regulación hacia Arriba , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Dendritas/metabolismo , Homólogo 1 de la Proteína Discs Large/metabolismo , Endocitosis , Técnicas de Silenciamiento del Gen , Ratones , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Sinapsis/metabolismo , Transcriptoma/genética
9.
Cell ; 165(7): 1749-1761, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315482

RESUMEN

Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.


Asunto(s)
Mantenimiento del Peso Corporal , Hipotálamo/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/metabolismo , Sinapsis , Proteína Relacionada con Agouti/metabolismo , Animales , Homeostasis , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Transgénicos
10.
Elife ; 5: e14997, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27113915

RESUMEN

Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Hipocampo/fisiología , Neuronas/fisiología , Transcriptoma , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Elife ; 5: e13503, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26999799

RESUMEN

There is a continuing need for driver strains to enable cell-type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However, since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu).


Asunto(s)
Biología Molecular/métodos , Neurobiología/métodos , Neuronas/fisiología , Coloración y Etiquetado/métodos , Animales , Ratones , Ratones Transgénicos
12.
Neuron ; 89(2): 351-68, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26777276

RESUMEN

Tissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population­hippocampal CA1 pyramidal cells (CA1 PCs)­and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Perfilación de la Expresión Génica/métodos , Células Piramidales/fisiología , Animales , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos
13.
Development ; 143(3): 411-21, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26700685

RESUMEN

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.


Asunto(s)
Linaje de la Célula/genética , Drosophila melanogaster/genética , Marcación de Gen , Neuronas/citología , Robótica , Transcriptoma/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Regulación del Desarrollo de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
14.
Science ; 350(6258): 317-20, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26472907

RESUMEN

Neural stem cells show age-dependent developmental potentials, as evidenced by their production of distinct neuron types at different developmental times. Drosophila neuroblasts produce long, stereotyped lineages of neurons. We searched for factors that could regulate neural temporal fate by RNA-sequencing lineage-specific neuroblasts at various developmental times. We found that two RNA-binding proteins, IGF-II mRNA-binding protein (Imp) and Syncrip (Syp), display opposing high-to-low and low-to-high temporal gradients with lineage-specific temporal dynamics. Imp and Syp promote early and late fates, respectively, in both a slowly progressing and a rapidly changing lineage. Imp and Syp control neuronal fates in the mushroom body lineages by regulating the temporal transcription factor Chinmo translation. Together, the opposing Imp/Syp gradients encode stem cell age, specifying multiple cell fates within a lineage.


Asunto(s)
Linaje de la Célula , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Proteínas de Unión al ARN/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN
15.
Elife ; 42015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329458

RESUMEN

Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.


Asunto(s)
Perfilación de la Expresión Génica , Hipotálamo/fisiología , Células Receptoras Sensoriales/fisiología , Pérdida de Peso , Proteína Relacionada con Agouti/análisis , Animales , Hipotálamo/citología , Ratones , Proopiomelanocortina/análisis , Células Receptoras Sensoriales/química
16.
J Neurosci ; 34(38): 12877-83, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232122

RESUMEN

Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome.


Asunto(s)
Regulación hacia Abajo/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Animales , Adhesión Celular/genética , Comunicación Celular/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Síndrome de Rett/genética
17.
Proc Natl Acad Sci U S A ; 111(31): 11515-20, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049382

RESUMEN

Asthma is a common debilitating inflammatory lung disease affecting over 200 million people worldwide. Here, we investigated neurogenic components involved in asthmatic-like attacks using the ovalbumin-sensitized murine model of the disease, and identified a specific population of neurons that are required for airway hyperreactivity. We show that ablating or genetically silencing these neurons abolished the hyperreactive broncho-constrictions, even in the presence of a fully developed lung inflammatory immune response. These neurons are found in the vagal ganglia and are characterized by the expression of the transient receptor potential vanilloid 1 (TRPV1) ion channel. However, the TRPV1 channel itself is not required for the asthmatic-like hyperreactive airway response. We also demonstrate that optogenetic stimulation of this population of TRP-expressing cells with channelrhodopsin dramatically exacerbates airway hyperreactivity of inflamed airways. Notably, these cells express the sphingosine-1-phosphate receptor 3 (S1PR3), and stimulation with a S1PR3 agonist efficiently induced broncho-constrictions, even in the absence of ovalbumin sensitization and inflammation. Our results show that the airway hyperreactivity phenotype can be physiologically dissociated from the immune component, and provide a platform for devising therapeutic approaches to asthma that target these pathways separately.


Asunto(s)
Asma/patología , Asma/fisiopatología , Hiperreactividad Bronquial/patología , Hiperreactividad Bronquial/fisiopatología , Neumonía/patología , Sistema Respiratorio/inervación , Células Receptoras Sensoriales/patología , Animales , Asma/complicaciones , Hiperreactividad Bronquial/complicaciones , Eliminación de Gen , Silenciador del Gen , Ratones , Ratones Endogámicos C57BL , Neumonía/complicaciones , Neumonía/fisiopatología , Receptores de Lisoesfingolípidos/metabolismo , Sistema Respiratorio/patología , Sistema Respiratorio/fisiopatología , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Nervio Vago/metabolismo , Nervio Vago/patología
18.
Proc Natl Acad Sci U S A ; 111(14): 5397-402, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706869

RESUMEN

Spatial patterns of gene expression in the vertebrate brain are not independent, as pairs of genes can exhibit complex patterns of coexpression. Two genes may be similarly expressed in one region, but differentially expressed in other regions. These correlations have been studied quantitatively, particularly for the Allen Atlas of the adult mouse brain, but their biological meaning remains obscure. We propose a simple model of the coexpression patterns in terms of spatial distributions of underlying cell types and establish its plausibility using independently measured cell-type-specific transcriptomes. The model allows us to predict the spatial distribution of cell types in the mouse brain.


Asunto(s)
Encéfalo/metabolismo , Expresión Génica , Modelos Biológicos , Animales , Ratones
19.
Elife ; 2: e00400, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23467508

RESUMEN

Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI:http://dx.doi.org/10.7554/eLife.00400.001.


Asunto(s)
Cerebelo/fisiología , Actividad Motora , Fibras Nerviosas/fisiología , Neuronas/fisiología , Puente/fisiología , Propiocepción , Animales , Cerebelo/citología , Cerebelo/metabolismo , Retroalimentación Sensorial , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas/metabolismo , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Puente/citología , Puente/metabolismo , Transmisión Sináptica
20.
Expert Rev Proteomics ; 8(5): 591-604, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21999830

RESUMEN

Single-cell analysis is gaining popularity in the field of mass spectrometry as a method for analyzing protein and peptide content in cells. The spatial resolution of MALDI mass spectrometry (MS) imaging is by a large extent limited by the laser focal diameter and the displacement of analytes during matrix deposition. Owing to recent advancements in both laser optics and matrix deposition methods, spatial resolution on the order of a single eukaryotic cell is now achievable by MALDI MS imaging. Provided adequate instrument sensitivity, a lateral resolution of approximately 10 µm is currently attainable with commercial instruments. As a result of these advances, MALDI MS imaging is poised to become a transformative clinical technology. In this article, the crucial steps needed to obtain single-cell resolution are discussed, as well as potential applications to disease research.


Asunto(s)
Biomarcadores/análisis , Proteínas/análisis , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Diagnóstico por Imagen , Humanos , Inmunohistoquímica/métodos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA