Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Aquat Toxicol ; 272: 106975, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824744

RESUMEN

In this study, we investigated the effects of PVC microplastics (PVC-MPs) using two different animal models: the brittle star Ophiactis virens, and the African clawed frog Xenopus laevis. This is the first study using an environmental relevant sample of PVC-MPs obtained through mechanical fragmentation of a common PVC plumbing pipe. Exposure experiments on brittle star were performed on the adult stage for a duration of 14 days, while those on African clawed frog were performed on the embryogenic developmental stage according to the standardized FETAX protocol (Frog Embryo Teratogenesis Assay-Xenopus). For both models, different endpoints were analysed: mortality, developmental parameters, behavioural assays and histological analyses on target organs by optical and electronic microscopy. Results showed that the concentration of 0.1 µg mL-1 PVC do not cause any adverse effects in both models (common NOEC concentration), while exposure to 1 µg mL-1 PVC adversely affected at least one species (common LOEC concentration). In particular arm regeneration efficiency was the most affected parameters in O. virens leading to a significantly lower differentiation pattern at 1 µg mL-1 PVC. On the contrary, in X. laevis larvae histopathological analyses and behavioural tests were the most susceptible endpoints, exhibiting several abnormal figures and different swimming speed at 10 µg mL-1 PVC. Histopathological analyses revealed a higher abundance of degenerating cells, pyknotic nuclei and cellular debris in the gut of exposed larvae in respect to control. The comparative analyses performed in this work allowed to characterize the specificity of action of the PVC-MPs on the two species, underlining the importance of exploring a large spectrum of endpoints to offer adequate protection in the emerging fields of microplastic research.


Asunto(s)
Microplásticos , Cloruro de Polivinilo , Contaminantes Químicos del Agua , Xenopus laevis , Animales , Cloruro de Polivinilo/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos
3.
Mar Drugs ; 22(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667780

RESUMEN

Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.


Asunto(s)
Antioxidantes , Colágeno , Paracentrotus , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Colágeno/química , Paracentrotus/química , Naftoquinonas/química , Naftoquinonas/aislamiento & purificación , Erizos de Mar/química , Residuos , Materiales Biocompatibles/química , Alimento Perdido y Desperdiciado
4.
Environ Pollut ; 348: 123868, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556148

RESUMEN

A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil-based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil-based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida. Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi-level approach was used to investigate the MP-induced effects at sub-individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time-points (i.e., 7, 14, 21 and 28 days) as sub-individual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms' oxidative status as showed by a bell-shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil-based MPs.


Asunto(s)
Microplásticos , Oligoquetos , Poliésteres , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Tereftalatos Polietilenos , Ecosistema , Antioxidantes/farmacología , Suelo , Polietileno/farmacología
5.
Mar Pollut Bull ; 200: 116061, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290366

RESUMEN

Nanoplastic contamination has become an issue of environmental concern but the information on the potential adverse effects of nanoplastics on marine ecosystems is still limited. Therefore, the aim of this work was to investigate the effects of the exposure to polystyrene nanoplastics (PS-NPs; 0.05, 0.5 and 5 µg/mL) on the brittles star Ophiactis virens. Diverse endpoints at different levels of biological organization were considered, including behavior, arm regeneration capacity and oxidative stress. PS-NPs were observed on the brittle star body surface but not in inner tissues. Accumulation of PS-NPs was observed in the pre-buccal cavity of animals exposed to 5 µg/mL PS-NPs which also displayed delayed righting activity and an oxidative stress condition. Nevertheless, no effect was observed on arm regeneration efficiency at any tested PS-NPs concentration. Overall, our results highlighted that prolonged exposure to high amounts of PS-NPs could interfere at least partially with the physiology of O. virens.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos , Ecosistema , Contaminantes Químicos del Agua/toxicidad
6.
Mar Drugs ; 22(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38248662

RESUMEN

Echinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics. In this review, after an up-to-date account of present knowledge of the structural, physiological and molecular adaptations of MCT and the mechanisms responsible for its variable tensile properties, we focus on MCT as a concept generator surveying biomimetic systems inspired by MCT biology, showing that these include both bio-derived developments (same function, analogous operating principles) and technology-derived developments (same function, different operating principles), and suggest a strategy for the further exploitation of this promising biological resource.


Asunto(s)
Materiales Biomiméticos , Pepinos de Mar , Animales , Equinodermos , Biomimética , Ingeniería Química
7.
Biol Rev Camb Philos Soc ; 99(1): 131-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37698089

RESUMEN

Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.


Asunto(s)
Artrópodos , Ecosistema , Animales , Humanos , Invertebrados
8.
J Hazard Mater ; 462: 132717, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820528

RESUMEN

Our world is made of plastic. Plastic waste deeply affects our health entering the food chain. The degradation and/or fragmentation of plastics due to weathering processes result in the generation of nanoplastics (NPs). Only a few studies tested NPs effects on human health. NPs toxic actions are, in part, mediated by oxidative stress (OS) that, among its effects, affects bone remodeling. This study aimed to assess if NPs influence skeleton remodeling through OS. Murine bone cell cultures (MC3T3-E1 preosteoblasts, MLOY-4 osteocyte-like cells, and RAW264.7 pre-osteoclasts) were used to test the NPs detrimental effects on bone cells. NPs affect cell viability and induce ROS production and apoptosis (by caspase 3/7 activation) in pre-osteoblasts, osteocytes, and pre-osteoclasts. NPs impair the migration capability of pre-osteoblasts and potentiate the osteoclastogenesis of preosteoclasts. NPs affected the expression of genes related to inflammatory and osteoblastogenic pathways in pre-osteoblasts and osteocytes, related to the osteoclastogenic commitment of pre-osteoclasts. A better understanding of the impact of NPs on bone cell activities resulting in vivo in impaired bone turnover could give more information on the possible toxicity consequence of NPs on bone mass and the subsequent public health problems, such as bone disease.


Asunto(s)
Microplásticos , Osteocitos , Ratones , Animales , Humanos , Osteocitos/metabolismo , Microplásticos/metabolismo , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Huesos , Diferenciación Celular
9.
Gels ; 9(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37888406

RESUMEN

In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics.

10.
Mar Drugs ; 21(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37888441

RESUMEN

The mutable collagenous tissue (MCT) of echinoderms possesses biological peculiarities that facilitate native collagen extraction and employment for biomedical applications such as regenerative purposes for the treatment of skin wounds. Strategies for skin regeneration have been developed and dermal substitutes have been used to cover the lesion to facilitate cell proliferation, although very little is known about the application of novel matrix obtained from marine collagen. From food waste we isolated eco-friendly collagen, naturally enriched with glycosaminoglycans, to produce an innovative marine-derived biomaterial assembled as a novel bi-layered skin substitute (Marine Collagen Dermal Template or MCDT). The present work carried out a preliminary experimental in vivo comparative analysis between the MCDT and Integra, one of the most widely used dermal templates for wound management, in a rat model of full-thickness skin wounds. Clinical, histological, and molecular evaluations showed that the MCDT might be a valuable tool in promoting and supporting skin wound healing: it is biocompatible, as no adverse reactions were observed, along with stimulating angiogenesis and the deposition of mature collagen. Therefore, the two dermal templates used in this study displayed similar biocompatibility and outcome with focus on full-thickness skin wounds, although a peculiar cellular behavior involving the angiogenesis process was observed for the MCDT.


Asunto(s)
Eliminación de Residuos , Piel Artificial , Animales , Ratas , Alimentos , Cicatrización de Heridas , Piel , Colágeno/farmacología , Equinodermos
11.
Antioxidants (Basel) ; 12(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760033

RESUMEN

Coping with a zero-waste, more sustainable economy represents the biggest challenge for food market nowadays. We have previously demonstrated that by applying smart multidisciplinary waste management strategies to purple sea urchin (Paracentrotus lividus) food waste, it is possible to obtain both a high biocompatible collagen to produce novel skin substitutes and potent antioxidant pigments, namely polyhydroxynapthoquinones (PHNQs). Herein, we have analyzed the biological activities of the PHNQs extract, composed of Spinochrome A and B, on human skin fibroblast cells to explore their future applicability in the treatment of non-healing skin wounds with the objective of overcoming the excessive oxidative stress that hinders wound tissue regeneration. Our results clearly demonstrate that the antioxidant activity of PHNQs is not restricted to their ability to scavenge reactive oxygen species; rather, it can be traced back to an upregulating effect on the expression of superoxide dismutase 1, one of the major components of the endogenous antioxidant enzymes defense system. In addition, the PHNQs extract, in combination with Antimycin A, displayed a synergistic pro-apoptotic effect, envisaging its possible employment against chemoresistance in cancer treatments. Overall, this study highlights the validity of a zero-waste approach in the seafood chain to obtain high-value products, which, in turn, may be exploited for different biomedical applications.

12.
Cell Tissue Res ; 394(2): 293-308, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37606764

RESUMEN

The potential to regenerate a damaged body part is expressed to a different extent in animals. Echinoderms, in particular starfish, are known for their outstanding regenerating potential. Differently, humans have restricted abilities to restore organ systems being dependent on limited sources of stem cells. In particular, the potential to regenerate the central nervous system is extremely limited, explaining the lack of natural mechanisms that could overcome the development of neurodegenerative diseases and the occurrence of trauma. Therefore, understanding the molecular and cellular mechanisms of regeneration in starfish could help the development of new therapeutic approaches in humans. In this study, we tackle the problem of starfish central nervous system regeneration by examining the external and internal anatomical and behavioral traits, the dynamics of coelomocyte populations, and neuronal tissue architecture after radial nerve cord (RNC) partial ablation. We noticed that the removal of part of RNC generated several anatomic anomalies and induced behavioral modifications (injured arm could not be used anymore to lead the starfish movement). Those alterations seem to be related to defense mechanisms and protection of the wound. In particular, histology showed that tissue patterns during regeneration resemble those described in holothurians and in starfish arm tip regeneration. Flow cytometry coupled with imaging flow cytometry unveiled a new coelomocyte population during the late phase of the regeneration process. Morphotypes of these and previously characterized coelomocyte populations were described based on IFC data. Further studies of this new coelomocyte population might provide insights on their involvement in radial nerve cord regeneration.


Asunto(s)
Nervio Radial , Pepinos de Mar , Animales , Humanos , Nervio Radial/fisiología , Estrellas de Mar/fisiología , Regeneración Nerviosa/fisiología
13.
Front Neurosci ; 16: 1006594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583101

RESUMEN

Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.

14.
Cell Tissue Res ; 390(2): 207-227, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36083358

RESUMEN

In echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.e., non-regenerating and/or regenerating). Our results show that CE cells share both ultrastructural and proteomic features with circulating coelomocytes (echinoderm immune cells). Additionally, microscopy and proteomic analyses indicate that CE cells are actively involved in protein synthesis and processing, and membrane trafficking processes such as phagocytosis (particularly of myocytes) and massive secretion phenomena. The latter might provide molecules (e.g., immune factors) and fluids for proper arm growth/regrowth. No stem cell marker was identified and no pre-existing stem cell was observed within the CE. Rather, during regeneration, CE cells undergo dedifferentiation and epithelial-mesenchymal transition to deliver progenitor cells for tissue replacement. Overall, our work underlines that echinoderm CE is not a "simple epithelial lining" and that instead it plays multiple functions which span from immunity-related roles as well as being a source of regeneration-competent cells for arm growth/regrowth.


Asunto(s)
Equinodermos , Proteómica , Animales , Epitelio/ultraestructura , Estrellas de Mar , Células Epiteliales
15.
Mar Drugs ; 20(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35447892

RESUMEN

Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010-2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.


Asunto(s)
Productos Biológicos , Animales , Organismos Acuáticos/metabolismo , Materiales Biocompatibles/metabolismo , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Equinodermos , Invertebrados/metabolismo , Biología Marina
16.
Methods Mol Biol ; 2450: 263-291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359313

RESUMEN

Echinoderms are marine invertebrate deuterostomes known for their amazing regenerative abilities throughout all life stages. Though some species can undergo whole-body regeneration (WBR), others exhibit more restricted regenerative capabilities. Asteroidea (starfish) comprise one of the few echinoderm taxa capable of undergoing WBR. Indeed, some starfish species can restore all tissues and organs not only during larval stages, but also from arm fragments as adults. Arm explants have been used to study cells, tissues and genes involved in starfish regeneration. Here, we describe methods for obtaining and studying regeneration of arm explants in starfish, in particular animal collection and husbandry, preparation of arm explants, regeneration tests, microscopic anatomy techniques (including transmission electron microscopy, TEM) used to analyze the regenerating explant tissues and cells plus a downstream RNA extraction protocol needed for subsequent molecular investigations.


Asunto(s)
Equinodermos , Estrellas de Mar , Animales , Equinodermos/genética , Larva
17.
Environ Int ; 164: 107264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35489111

RESUMEN

The presence and potential toxicity of nanoplastics (NPs) in aquatic ecosystems is an issue of growing concern. Although many studies have investigated the adverse effects of short-term exposure to high concentrations of NPs to aquatic organisms, the information on the consequences caused by the administration of low NPs concentrations over long-term exposure is limited. The present study aimed at investigating the effects induced by a long-term exposure (21-days) to two sub-lethal concentrations of polystyrene nanoplastics (PS-NPs; 0.05 and 0.5 µg/mL) on Daphnia magna. A multi-level approach was performed to assess potential sub-individual (i.e., molecular and biochemical) and individual (i.e., behavioural) adverse effects. At molecular level, the modulation of the expression of genes involved in antioxidant defence, response to stressful conditions and specific physiological pathways was investigated. Oxidative stress (i.e., the amount of pro-oxidants, the activity of antioxidant and detoxifying enzymes and lipid peroxidation) and energetic (i.e., protein, carbohydrate, lipid and total caloric content) biomarkers were applied to assess effects at the biochemical level, while swimming activity was measured to monitor changes in individual behavior. Although the 21-days exposure to PS-NPs induced a slight modulation of gene involved in oxidative stress response, biochemical analyses showed that D. magna individuals did not experience an oxidative stress condition. Significant changes in energy reserves of individuals exposed for 21 days to both the PS-NPs concentrations were observed, but no alterations of swimming activity occurred. Our results highlighted that the exposure to low concentrations of PS-NPs could pose a limited risk to D. magna individuals and suggested the importance of a multi-level approach to assess the risks of NPs on aquatic organisms.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Daphnia/metabolismo , Ecosistema , Microplásticos/toxicidad , Poliestirenos/análisis , Poliestirenos/química , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/análisis
18.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617397

RESUMEN

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Asunto(s)
Células Madre Adultas , Drosophila melanogaster , Animales , Diferenciación Celular , Fenotipo
19.
Front Nutr ; 8: 730747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589514

RESUMEN

Commonly known as "purple sea urchin," Paracentrotus lividus occurs in the Mediterranean Sea and the eastern Atlantic Ocean. This species is a highly appreciated food resource and Italy is the main consumer among the European countries. Gonads are the edible part of the animal but they represent only a small fraction (10-30%) of the entire sea urchin mass, therefore, the majority ends up as waste. Recently, an innovative methodology was successfully developed to obtain high-value collagen from sea urchin by-products to be used for tissue engineering. However, tissues used for the collagen extraction are still a small portion of the sea urchin waste (<20%) and the remaining part, mainly the carbonate-rich test and spines, are discarded. Residual cell tissues, tests, and spines contain polyunsaturated fatty acids, carotenoids, and a class of small polyphenols, called polyhydroxynaphthoquinones (PHNQ). PHNQ, due to their polyhydroxylated quinonoid nature, show remarkable pharmacologic effects, and have high economic significance and widespread application in several cosmetic and pharmaceuticals applications. A green extraction strategy aimed to obtain compounds of interest from the wastes of sea urchins was developed. The core strategy was the supercritical CO2 technique, characterized by low environmental impacts. Fatty acids and carotenoids were successfully and selectively extracted and identified depending on the physical parameters of the supercritical CO2 extraction. Finally, the exhausted powder was extracted by solvent-based procedures to yield PHNQ. The presence of Spinochrome A and Spinochrome B was confirmed and extracts were characterized by a remarkably high antioxidant activity, measured through the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. Overall, the selective and successive extraction methods were validated for the valorization of waste from sea urchins, demonstrating the feasibility of the techniques targeting added-value compounds.

20.
Front Immunol ; 12: 688106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276677

RESUMEN

The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.


Asunto(s)
Organismos Acuáticos/inmunología , Sistema Inmunológico/inmunología , Inmunidad Innata , Células Madre/inmunología , Biología de Sistemas , Alergia e Inmunología , Organismos Acuáticos/citología , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Comunicación Celular , Genómica , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Biología Marina , Transducción de Señal , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA