Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2303402120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523531

RESUMEN

The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Fosforilación , Neurotransmisores/metabolismo
2.
Nat Commun ; 14(1): 3586, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328454

RESUMEN

Mitochondria-associated ER membrane (MAM) is a structure where these calcium-regulating organelles form close physical contact sites for efficient Ca2+ crosstalk. Despite the central importance of MAM Ca2+ dynamics in diverse biological processes, directly and specifically measuring Ca2+ concentrations inside MAM is technically challenging. Here, we develop MAM-Calflux, a MAM-specific BRET-based Ca2+ indicator. The successful application of the bimolecular fluorescence complementation (BiFC) concept highlights Ca2+-responsive BRET signals in MAM. The BiFC strategy imparts dual functionality as a Ca2+ indicator and quantitative structural marker specific for MAM. As a ratiometric Ca2+ indicator, MAM-Calflux estimates steady-state MAM Ca2+ levels. Finally, it enables the visualization of uneven intracellular distribution of MAM Ca2+ and the elucidation of abnormally accumulated MAM Ca2+ from the neurons of Parkinson's disease mouse model in both steady-state and stimulated conditions. Therefore, we propose that MAM-Calflux can be a versatile tool for ratiometrically measuring dynamic inter-organellar Ca2+ communication.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Ratones , Animales , Retículo Endoplásmico/metabolismo
3.
Transl Psychiatry ; 11(1): 110, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542182

RESUMEN

Disrupted-in-schizophrenia 1 (DISC1) is a scaffold protein that has been implicated in multiple mental disorders. DISC1 is known to regulate neuronal proliferation, signaling, and intracellular calcium homeostasis, as well as neurodevelopment. Although DISC1 was linked to sleep-associated behaviors, whether DISC1 functions in the circadian rhythm has not been determined yet. In this work, we revealed that Disc1 expression exhibits daily oscillating pattern and is regulated by binding of circadian locomotor output cycles kaput (CLOCK) and Brain and muscle Arnt-like protein-1 (BMAL1) heterodimer to E-box sequences in its promoter. Interestingly, Disc1 deficiency increases the ubiquitination of BMAL1 and de-stabilizes it, thereby reducing its protein levels. DISC1 inhibits the activity of GSK3ß, which promotes BMAL1 ubiquitination, suggesting that DISC1 regulates BMAL1 stability by inhibiting its ubiquitination. Moreover, Disc1-deficient cells and mice show reduced expression of other circadian genes. Finally, Disc1-LI (Disc1 knockout) mice exhibit damped circadian physiology and behaviors. Collectively, these findings demonstrate that the oscillation of DISC1 expression is under the control of CLOCK and BMAL1, and that DISC1 contributes to the core circadian system by regulating BMAL1 stability.


Asunto(s)
Relojes Circadianos , Esquizofrenia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Ratones , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas
4.
Mol Brain ; 14(1): 14, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461576

RESUMEN

Mitochondrial movement in neurons is finely regulated to meet the local demand for energy and calcium buffering. Elaborate transport machinery including motor complexes is required to deliver and localize mitochondria to appropriate positions. Defects in mitochondrial transport are associated with various neurological disorders without a detailed mechanistic information. In this study, we present evidence that dystrobrevin-binding protein 1 (dysbindin), a schizophrenia-associated factor, plays a critical role in axonal mitochondrial movement. We observed that mitochondrial movement was impaired in dysbindin knockout mouse neurons. Reduced mitochondrial motility caused by dysbindin deficiency decreased the density of mitochondria in the distal part of axons. Moreover, the transport and distribution of mitochondria were regulated by the association between dysbindin and p150glued. Furthermore, altered mitochondrial distribution in axons led to disrupted calcium dynamics, showing abnormal calcium influx in presynaptic terminals. These data collectively suggest that dysbindin forms a functional complex with p150glued that regulates axonal mitochondrial transport, thereby affecting presynaptic calcium homeostasis.


Asunto(s)
Axones/metabolismo , Complejo Dinactina/metabolismo , Disbindina/metabolismo , Mitocondrias/metabolismo , Esquizofrenia/metabolismo , Animales , Calcio/metabolismo , Células HEK293 , Homeostasis , Humanos , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Modelos Biológicos , Terminales Presinápticos/metabolismo , Unión Proteica
5.
Mol Neurobiol ; 56(10): 6725-6735, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30915712

RESUMEN

Disrupted-in-Schizophrenia 1 (DISC1) is a scaffold protein implicated in various psychiatric diseases. Dysregulation of the dopamine system has been associated with DISC1 deficiency, while the molecular mechanism is unclear. In this study, we propose a novel molecular mechanism underlying the transcriptional regulation of the dopamine D1 receptor (D1R) in the striatum via DISC1. We verified the increase in D1R at the transcriptional level in the striatum of DISC1-deficient mouse models and altered histone acetylation status at the D1r locus. We identified a functional interaction between DISC1 and Krüppel-like factor 16 (KLF16). KLF16 translocates DISC1 into the nucleus and forms a regulatory complex by recruiting SIN3A corepressor complexes to the D1r locus. Moreover, DISC1-deficient mice have altered D1R-mediated signaling in the striatum and exhibit hyperlocomotion in response to cocaine; the blockade of D1R suppresses these effects. Taken together, our results suggest that nuclear DISC1 plays a critical role in the transcriptional regulation of D1R in the striatal neuron, providing a mechanistic link between DISC1 and dopamine-related psychiatric symptoms.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Receptores de Dopamina D1/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Conducta Animal , Núcleo Celular/metabolismo , Proteínas Co-Represoras/metabolismo , Cuerpo Estriado/metabolismo , Sitios Genéticos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/deficiencia , Unión Proteica , Transporte de Proteínas , Receptores de Dopamina D1/genética , Transducción de Señal , Complejo Correpresor Histona Desacetilasa y Sin3 , Regulación hacia Arriba/genética
6.
Cell Rep ; 21(10): 2748-2759, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212023

RESUMEN

A wide range of Ca2+-mediated functions are enabled by the dynamic properties of Ca2+, all of which are dependent on the endoplasmic reticulum (ER) and mitochondria. Disrupted-in-schizophrenia 1 (DISC1) is a scaffold protein that is involved in the function of intracellular organelles and is linked to cognitive and emotional deficits. Here, we demonstrate that DISC1 localizes to the mitochondria-associated ER membrane (MAM). At the MAM, DISC1 interacts with IP3R1 and downregulates its ligand binding, modulating ER-mitochondria Ca2+ transfer through the MAM. The disrupted regulation of Ca2+ transfer caused by DISC1 dysfunction leads to abnormal Ca2+ accumulation in mitochondria following oxidative stress, which impairs mitochondrial functions. DISC1 dysfunction alters corticosterone-induced mitochondrial Ca2+ accumulation in an oxidative stress-dependent manner. Together, these findings link stress-associated neural stimuli with intracellular ER-mitochondria Ca2+ crosstalk via DISC1, providing mechanistic insight into how environmental risk factors can be interpreted by intracellular pathways under the control of genetic components in neurons.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo/fisiología
7.
FASEB J ; 31(6): 2301-2313, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28223337

RESUMEN

The dopaminergic system plays an essential role in various functions of the brain, including locomotion, memory, and reward, and the deregulation of dopaminergic signaling as a result of altered functionality of dopamine D2 receptor (DRD2) is implicated in multiple neurologic and psychiatric disorders. Tetraspanin-7 (TSPAN7) is expressed to variable degrees in different tissues, with the highest level in the brain, and multiple mutations in TSPAN7 have been implicated in intellectual disability. Here, we tested the hypothesis that TSPAN7 may be a binding partner of DRD2 that is involved in the regulation of its functional activity. Our results showed that TSPAN7 was associated with DRD2 and reduced its surface expression by enhancing DRD2 internalization. Immunocytochemical analysis revealed that TSPAN7 that resides in the plasma membrane and early and late endosomes promoted internalization of DRD2 and its localization to endosomal compartments of the endocytic pathway. Furthermore, we observed that TSPAN7 deficiency increased surface localization of DRD2 concurrent with the decrease of its endocytosis, regardless of dopamine treatment. Finally, TSPAN7 negatively affects DRD2-mediated signaling. These results disclosed a previously uncharacterized role of TSPAN7 in the regulation of the expression and functional activity of DRD2 by postendocytic trafficking.-Lee, S.-A., Suh, Y., Lee, S., Jeong, J., Kim, S. J., Kim, S. J., Park, S. K. Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Receptores de Dopamina D2/metabolismo , Tetraspaninas/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas , Transporte de Proteínas , Receptores de Dopamina D2/genética , Transducción de Señal , Tetraspaninas/genética
8.
Sci Rep ; 6: 31827, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27546710

RESUMEN

Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Microfilamentos/metabolismo , Actinas/metabolismo , Proteínas Portadoras/genética , Línea Celular , Movimiento Celular , Eliminación de Gen , Humanos , Proteínas de Microfilamentos/genética
9.
Mol Brain ; 9(1): 69, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27370822

RESUMEN

In neuronal axons, the ratio of motile-to-stationary mitochondria is tightly regulated by neuronal activation, thereby meeting the need for local calcium buffering and maintaining the ATP supply. However, the molecular players and detailed regulatory mechanisms behind neuronal mitochondrial movement are not completely understood. Here, we found that neuronal activation-induced mitochondrial anchoring is regulated by Disrupted-in-schizophrenia 1 (DISC1), which is accomplished by functional association with Syntaphilin (SNPH). DISC1 deficiency resulted in reduced axonal mitochondrial movement, which was partially reversed by concomitant SNPH depletion. In addition, a SNPH deletion mutant lacking the sequence for interaction with DISC1 exhibited an enhanced mitochondrial anchoring effect than wild-type SNPH. Moreover, upon neuronal activation, mitochondrial movement was preserved by DISC1 overexpression, not showing immobilized response of mitochondria. Taken together, we propose that DISC1 in association with SNPH is a component of a modulatory complex that determines mitochondrial anchoring in response to neuronal activation.


Asunto(s)
Axones/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Proteínas de la Membrana , Ratones , Ratones Endogámicos ICR , Unión Proteica , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA