Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Bioact Mater ; 40: 634-648, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39253616

RESUMEN

Articular cartilage injury (ACI) remains one of the key challenges in regenerative medicine, as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage. Enhancing endogenous repair via microRNAs (miRNAs) shows promise as a regenerative therapy. miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid (tFNA)-based targeting miRNA codelivery system, named A-T-M, was used. With tFNAs as vehicles, miR-140 and miR-455 were connected to and modified on tFNAs, while Apt19S (a DNA aptamer targeting MSCs) was directly integrated into the nanocomplex. The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms. Interestingly, a synergistic effect between miR-140 and miR-455 was revealed. Furthermore, A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation. A-T-M provides a new perspective and strategy for the regeneration of articular cartilage, showing strong clinical application value in the future treatment of ACI.

2.
Acta Biomater ; 187: 66-81, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39168422

RESUMEN

Tissue engineering presents a promising approach for the treatment of meniscal injuries, yet the development of meniscal scaffolds that exhibit both superior biomechanical properties and biocompatibility remains a considerable challenge. In this study, decellularized skin matrix (DSM) scaffolds were first prepared using porcine skin through decellularization and freeze-drying techniques. The DSM scaffold has favorable porosity, hydrophilicity, and biocompatibility. Importantly, the collagen content and tensile modulus of the scaffold are comparable to those of native meniscus (44.13 ± 2.396 mg/g vs. 42.41 ± 2.40 mg/g and 103.30 ± 2.98 MPa vs. 128.80 ± 9.115 MPa). Subsequently, the peptide PFSSTKT (PFS) with mesenchymal stem cells (MSCs) recruitment capability was used to modify DSM to construct DSM-PFS scaffolds. Compared to the DSM scaffold, the optimized DSM-PFS scaffold enhanced in vitro collagen and glycosaminoglycan (GAG) production and upregulated the expression of cartilage-specific genes. Furthermore, the DSM-PFS scaffold was more effective in recruiting MSCs in vitro. In vivo studies in rabbit models showed that the DSM-PFS scaffold successfully promoted meniscus tissue regeneration. Three months post-implantation, meniscus tissue formation can be observable, and after six months, the neo-meniscus exhibited tissue structure and tensile properties similar to the native meniscus. Notably, the DSM-PFS scaffold exhibited significant chondroprotective effects, slowing osteoarthritis (OA) progression. In conclusion, the DSM-PFS scaffold may represent a promising candidate for future applications in meniscus tissue engineering. STATEMENT OF SIGNIFICANCE: We developed a decellularized skin matrix (DSM) meniscus scaffold using whole-layer porcine skin, demonstrating superior biomechanical strength and biocompatibility. Following modification with the stem cell-recruiting peptide PFS, the optimized DSM-PFS scaffold outperformed the DSM scaffold in cell attraction, collagen and glycosaminoglycan production, and cartilage-specific gene expression. Implanted into rabbit knee joints, the cell-free DSM-PFS scaffold induced meniscal tissue formation within three months, achieving the histological structure and tensile strength of the native meniscus by six months. Moreover, it significantly protected the cartilage. Our findings provide new insights into the fabrication of scaffolds for meniscal tissue engineering, with the DSM-PFS scaffold emerging as an ideal candidate for future applications.


Asunto(s)
Meniscectomía , Menisco , Regeneración , Andamios del Tejido , Animales , Conejos , Andamios del Tejido/química , Piel/patología , Matriz Extracelular Descelularizada/química , Porcinos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Sistema Libre de Células/química , Ingeniería de Tejidos/métodos
3.
Bioact Mater ; 41: 455-470, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39188379

RESUMEN

Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.

4.
Adv Sci (Weinh) ; 11(34): e2401855, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973158

RESUMEN

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.


Asunto(s)
Conducta Animal , Depresión , Modelos Animales de Enfermedad , Tálamo , Animales , Depresión/fisiopatología , Masculino , Tálamo/fisiopatología , Conducta Animal/fisiología , Ratones , Vías Nerviosas/fisiopatología , Dolor/fisiopatología , Dolor Crónico/fisiopatología
5.
Artículo en Inglés | MEDLINE | ID: mdl-39083434

RESUMEN

Meniscal damage is one of the prevalent causes of knee pain, swelling, instability, and functional compromise, frequently culminating in osteoarthritis (OA). Timely and appropriate interventions are crucial to relieve symptoms and prevent or delay the onset of OA. Contemporary surgical treatments include total or partial meniscectomy, meniscal repair, allograft meniscal transplantation, and synthetic meniscal implants, but each presents its specific limitations. Recently, regenerative medicine and tissue engineering have emerged as promising fields, offering innovative prospects for meniscal regeneration and repair. This review delineates current surgical methods, elucidating their specific indications, advantages, and disadvantages. Concurrently, it delves into state-of-the-art tissue engineering techniques aimed at the functional regenerative repair of meniscus. Recommendations for future research and clinical practice are also provided.

6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 748-754, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918198

RESUMEN

Objective: To investigate the construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal (3D) printing technology and evaluate its biocompatibility. Methods: The fresh pig meniscus was decellularized by improved physicochemical method to obtain decellularized meniscus matrix homogenate. Gross observation, HE staining, and DAPI staining were used to observe the decellularization effect. Toluidine blue staining, safranin O staining, and sirius red staining were used to evaluate the retention of mucopolysaccharide and collagen. Then, the decellularized meniscus matrix bioink was prepared, and the new tissue engineered meniscus scaffold was prepared by low temperature deposition 3D printing technology. Scanning electron microscopy was used to observe the microstructure. After co-culture with adipose-derived stem cells, the cell compatibility of the scaffolds was observed by cell counting kit 8 (CCK-8), and the cell activity and morphology were observed by dead/live cell staining and cytoskeleton staining. The inflammatory cell infiltration and degradation of the scaffolds were evaluated by subcutaneous experiment in rats. Results: The decellularized meniscus matrix homogenate appeared as a transparent gel. DAPI and histological staining showed that the immunogenic nucleic acids were effectively removed and the active components of mucopolysaccharide and collagen were remained. The new tissue engineered meniscus scaffolds was constructed by low temperature deposition 3D printing technology and it had macroporous-microporous microstructures under scanning electron microscopy. CCK-8 test showed that the scaffolds had good cell compatibility. Dead/live cell staining showed that the scaffold could effectively maintain cell viability (>90%). Cytoskeleton staining showed that the scaffolds were benefit for cell adhesion and spreading. After 1 week of subcutaneous implantation of the scaffolds in rats, there was a mild inflammatory response, but no significant inflammatory response was observed after 3 weeks, and the scaffolds gradually degraded. Conclusion: The novel tissue engineered meniscus scaffold constructed by low temperature deposition 3D printing technology has a graded macroporous-microporous microstructure and good cytocompatibility, which is conducive to cell adhesion and growth, laying the foundation for the in vivo research of tissue engineered meniscus scaffolds in the next step.


Asunto(s)
Menisco , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porcinos , Ratas , Menisco/citología , Materiales Biocompatibles , Ratas Sprague-Dawley , Células Cultivadas , Meniscos Tibiales/citología , Microscopía Electrónica de Rastreo
7.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1025-1032, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884237

RESUMEN

In this study, we explored the thickness influence of undecomposed litter layer and semi-decomposed litter layer on the natural regeneration in an artificial pure forest of Larix principis-rupprechtii in the forest area of Guandi Mountain. We divided the litter into an undecomposed layer and a semi-decomposed layer, which was further divided into eight groups based on the thickness. The results showed that when the thickness of undecomposed layer was 0.32-0.83 cm, and that of semi-decomposed layer was 0.18-0.89 cm, the regeneration index was larger (≥0.15), and the regeneration was better. When the thickness of undecomposed layer was more than 1.1 cm and that of semi-decomposed layer was more than 0.5 cm, the regeneration index was smaller (≤0.07), and the rege-neration of understory was worse. Results of redundancy analysis showed that the undecomposed layer thickness of litter had a high and stable explanatory ability for natural regeneration, with a contribution rate of 38.7%, while the semi-decomposed layer thickness had no significant effect on natural regeneration. Structural equation modeling revealed that the thickness of undecomposed layer of litter increased the mechanical resistance to seed germination which had a negative direct effect on natural regeneration (-0.617), and a positive indirect effect on natural rege-neration by influencing the content of alkali-hydrolyzed nitrogen and available phosphorus (+0.178). The combined effects (-0.439) showed an inhibitory effect on the natural regeneration. In conclusion, the thickness of undecomposed layer of litter under L. principis-rupprechtii was most closely related to natural regeneration, and the thickness of semi-decomposed layer had a minimal effect on natural regeneration.


Asunto(s)
Larix , Larix/crecimiento & desarrollo , China , Hojas de la Planta/crecimiento & desarrollo , Conservación de los Recursos Naturales , Ecosistema , Bosques , Suelo/química
8.
World J Clin Cases ; 12(5): 891-902, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38414603

RESUMEN

BACKGROUND: Previous studies have indicated bidirectional associations between urate levels and inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD). However, it remains unclear whether the observations are causal because of confounding factors. AIM: To investigate the causal associations between urate levels and IBD using bidirectional Mendelian randomization (MR). METHODS: Independent genetic variants for urate levels and IBD were selected as instrumental variables from published genome-wide association studies (GWASs). Summary statistics for instrument-outcome associations were retrieved from three separate databases for IBD (the UK Biobank, the FinnGen database and a large GWAS meta-analysis) and one for urate levels (a large GWAS meta-analysis). MR analyses included the inverse-variance-weighted method, weighted-median estimator, MR-Egger and sensitivity analyses (MR-PRESSO). A meta-analysis was also conducted to merge the data from separate outcome databases using a fixed-effects model. RESULTS: Genetically higher serum urate levels were strongly associated with an increased risk of UC [odds ratio (OR): 1.95, 95% confidence interval (CI): 1.86-2.05] after outlier correction, and the ORs (95%CIs) for IBD and CD were 0.94 (95%CI: 0.86-1.03) and 0.91 (95%CI: 0.80-1.04), respectively. Animal studies have confirmed the positive association between urate levels and UC. Moreover, genetically predicted IBD was inversely related to urate levels (OR: 0.97, 95%CI: 0.94-0.99). However, no association was observed between genetically influenced UC or CD and urate levels. CONCLUSION: Urate levels might be risk factors for UC, whereas genetically predicted IBD was inversely associated with urate levels. These findings provide essential new insight for treating and preventing IBD.

9.
J Nanobiotechnology ; 22(1): 74, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395929

RESUMEN

Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M2 polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration.


Asunto(s)
Cartílago Articular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Hidrogeles , Andamios del Tejido/química , Gelatina , Células Madre , Hipoxia
10.
Bioinspir Biomim ; 19(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38194701

RESUMEN

Modeling and control methods for stiffness-tunable soft robots (STSRs) have received less attention compared to standard soft robots. A major challenge in controlling STSRs is their infinite degrees of freedom, similar to standard soft robots. In this paper, demonstrate a novel STSR by combing a soft-rigid hybrid spine-mimicking actuator with a stiffness-tunable module. Additionally, we introduce a new kinematic and dynamic modeling methodology for the proposed STSR. Based on the STSR characteristics, we model it as a series of PRP segments, each composed of two prismatic joints(P) and one revolute joint(R). This method is simpler, more generalizable, and more computationally efficient than existing approaches. We also design a multi-input multi-output (MIMO) controller that directly adjusts the pressure of the STSR's three pneumatic chambers to precisely control its posture. Both the novel modeling methodology and MIMO control system are implemented and validated on the proposed STSR prototype.


Asunto(s)
Robótica , Robótica/métodos , Fenómenos Biomecánicos , Diseño de Equipo , Postura
11.
Cell Prolif ; 57(6): e13605, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38282322

RESUMEN

Clinicians and researchers have always faced challenges in performing surgery for rotator cuff tears (RCT) due to the intricate nature of the tendon-bone gradient and the limited long-term effectiveness. At the same time, the occurrence of an inflammatory microenvironment further aggravates tissue damage, which has a negative impact on the regeneration process of mesenchymal stem cells (MSCs) and eventually leads to the production of scar tissue. Tetrahedral framework nucleic acids (tFNAs), novel nanomaterials, have shown great potential in biomedicine due to their strong biocompatibility, excellent cellular internalisation ability, and unparalleled programmability. The objective of this research was to examine if tFNAs have a positive effect on regeneration after RCTs. Experiments conducted in a controlled environment demonstrated that tFNAs hindered the assembly of inflammasomes in macrophages, resulting in a decrease in the release of inflammatory factors. Next, tFNAs were shown to exert a protective effect on the osteogenic and chondrogenic differentiation of bone marrow MSCs under inflammatory conditions. The in vitro results also demonstrated the regulatory effect of tFNAs on tendon-related protein expression levels in tenocytes after inflammatory stimulation. Finally, intra-articular injection of tFNAs into a rat RCT model showed that tFNAs improved tendon-to-bone healing, suggesting that tFNAs may be promising tendon-to-bone protective agents for the treatment of RCTs.


Asunto(s)
Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Lesiones del Manguito de los Rotadores , Lesiones del Manguito de los Rotadores/tratamiento farmacológico , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/patología , Animales , Ratas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ácidos Nucleicos/farmacología , Ácidos Nucleicos/metabolismo , Diferenciación Celular/efectos de los fármacos , Masculino , Osteogénesis/efectos de los fármacos , Tendones/efectos de los fármacos , Tendones/metabolismo , Tendones/patología , Huesos/efectos de los fármacos , Huesos/metabolismo , Manguito de los Rotadores/cirugía , Manguito de los Rotadores/patología , Condrogénesis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
12.
Chem Commun (Camb) ; 60(2): 220-223, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050964

RESUMEN

A Si/Si-Co multilayer film, with Co confined doping in the silicon anode, was successfully fabricated by alternating magnetron sputtering, achieving both metal doping and surface coating. Operando magnetometry revealed the stability of the Si-Co layers during cycling. The symmetrical Si-Co layers can protect the overall structure of the Si anodes and facilitate electron conduction. Consequently, the resultant Si anode delivers an impressive initial coulombic efficiency of 93.4% with large capacity retention of 85.07% after 100 cycles.

13.
Acta Pharm Sin B ; 13(10): 4127-4148, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799383

RESUMEN

Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.

14.
Regen Biomater ; 10: rbad085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37814675

RESUMEN

The field of regenerative medicine faces a notable challenge in terms of the regeneration of articular cartilage. Without proper treatment, it can lead to osteoarthritis. Based on the research findings, human umbilical cord mesenchymal stem cells (hUMSCs) are considered an excellent choice for regenerating cartilage. However, there is still a lack of suitable biomaterials to control their ability to self-renew and differentiate. To address this issue, in this study using tetrahedral framework nucleic acids (tFNAs) as a new method in an in vitro culture setting to manage the behaviour of hUMSCs was proposed. Then, the influence of tFNAs on hUMSC proliferation, migration and chondrogenic differentiation was explored by combining bioinformatics methods. In addition, a variety of molecular biology techniques have been used to investigate deep molecular mechanisms. Relevant results demonstrated that tFNAs can affect the transcriptome and multiple signalling pathways of hUMSCs, among which the PI3K/Akt pathway is significantly activated. Furthermore, tFNAs can regulate the expression levels of multiple proteins (GSK3ß, RhoA and mTOR) downstream of the PI3K-Akt axis to further enhance cell proliferation, migration and hUMSC chondrogenic differentiation. tFNAs provide new insight into enhancing the chondrogenic potential of hUMSCs, which exhibits promising potential for future utilization within the domains of AC regeneration and clinical treatment.

15.
J Nanobiotechnology ; 21(1): 269, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37574546

RESUMEN

Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.


Asunto(s)
Inflamasomas , Nanofibras , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
16.
ACS Appl Mater Interfaces ; 15(19): 22944-22958, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37134259

RESUMEN

The regeneration and reconstruction of articular cartilage (AC) after a defect are often difficult. The key to the treatment of AC defects lies in regeneration of the defect site and regulation of the inflammatory response. In this investigation, a bioactive multifunctional scaffold was formulated using the aptamer Apt19S as a mediator for mesenchymal stem cell (MSC)-specific recruitment and the enhancement of cellular chondrogenic and inflammatory regulation through the incorporation of Mg2+. Apt19S, which can recruit MSCs in vitro and in vivo, was chemically conjugated to a decellularized cartilage extracellular matrix (ECM)-lysed scaffold. The results from in vitro experiments using the resulting scaffold demonstrated that the inclusion of Mg2+ could stimulate not only the chondrogenic differentiation of synovial MSCs but also the increased polarization of macrophages toward the M2 phenotype. Additionally, Mg2+ inhibited NLRP3 inflammasome activation, thereby decreasing chondrocyte pyroptosis. Subsequently, Mg2+ was incorporated into the bioactive multifunctional scaffold, and the resulting scaffold promoted cartilage regeneration in vivo. In conclusion, this study confirms that the combination of Mg2+ and aptamer-functionalized ECM scaffolds is a promising strategy for AC regeneration based on in situ tissue engineering and early inflammatory regulation.


Asunto(s)
Cartílago Articular , Cartílago Articular/fisiología , Magnesio/farmacología , Regeneración/fisiología , Condrocitos , Ingeniería de Tejidos/métodos , Oligonucleótidos , Condrogénesis , Matriz Extracelular/metabolismo , Iones/metabolismo , Andamios del Tejido
17.
Front Bioeng Biotechnol ; 11: 1115312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890920

RESUMEN

Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.

18.
Biomater Res ; 27(1): 7, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36739446

RESUMEN

BACKGROUND: In recent years, there has been significant research progress on in situ articular cartilage (AC) tissue engineering with endogenous stem cells, which uses biological materials or bioactive factors to improve the regeneration microenvironment and recruit more endogenous stem cells from the joint cavity to the defect area to promote cartilage regeneration. METHOD: In this study, we used ECM alone as a bioink in low-temperature deposition manufacturing (LDM) 3D printing and then successfully fabricated a hierarchical porous ECM scaffold incorporating GDF-5. RESULTS: Comparative in vitro experiments showed that the 7% ECM scaffolds had the best biocompatibility. After the addition of GDF-5 protein, the ECM scaffolds significantly improved bone marrow mesenchymal stem cell (BMSC) migration and chondrogenic differentiation. Most importantly, the in vivo results showed that the ECM/GDF-5 scaffold significantly enhanced in situ cartilage repair. CONCLUSION: In conclusion, this study reports the construction of a new scaffold based on the concept of in situ regeneration, and we believe that our findings will provide a new treatment strategy for AC defect repair.

19.
Mater Today Bio ; 19: 100549, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36756208

RESUMEN

Improving the poor microenvironment in the joint cavity has potential for treating cartilage injury, and mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos), which can modulate cellular behavior, are becoming a new cell-free therapy for cartilage repair. Here, we used acellular cartilage extracellular matrix (ACECM) to prepare 3D scaffolds and 2D substrates by low-temperature deposition modeling (LDM) and tape casting. We aimed to investigate whether MSC-Exos cultured on scaffolds of different dimensions could improve the poor joint cavity microenvironment caused by cartilage injury and to explore the related mechanisms. In vitro experiments showed that exosomes derived from MSCs cultured on three-dimensional (3D) scaffolds (3D-Exos) had increased efficiency. In short-term animal experiments, compared with exosomes derived from MSCs cultured in a two-dimensional (2D) environment (2D-Exos), 3D-Exos had a stronger ability to regulate the joint cavity microenvironment. Long-term animal studies confirmed the therapeutic efficacy of 3D-Exos over 2D-Exos. Thus, 3D-Exos were applied in the rat knee osteochondral defect model after adsorption in the micropores of the scaffold and combined with subsequent articular cavity injections, and they showed a stronger cartilage repair ability. These findings provide a new strategy for repairing articular cartilage damage. Furthermore, miRNA sequencing indicated that the function of 3D-Exos may be associated with high expression of miRNAs. Thus, our study provides valuable insights for the design of 3D-Exos to promote cartilage regeneration.

20.
Biomaterials ; 291: 121888, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403324

RESUMEN

Inferior healing and peritendinous adhesions are the major clinical problems following Achilles tendon injury, leading to impaired motor function and an increased risk of re-rupture. These complications are presumed to be inextricably linked to inflammation and fibroscar formation. Here, microRNA29a is identified as a promising therapeutic target for tendon injury through the cross-regulation of the immune response and matrix remodeling. MiR29a-LNPs were successfully prepared by microfluidic technology. They are then loaded into the core-shell nanofibers to achieve local delivery in the injured tendon, where the shell layer is composed of PELA for anti-adhesion. Our studies reveal that miR29a regulates collagen synthesis and NF-κB activation in tenocytes, and promotes macrophage polarization by inhibiting the inflammasome pathway. In vivo studies of the Achilles tendon-rupture model indicate the best repair in the miR29a group, as evidenced by superior collagen composition and alignment, higher mechanical strength, and better functional recovery. In conclusion, a functionalized anti-adhesive membrane that promotes nascent tendon matrix remodeling and improves the regenerative immune microenvironment is developed for the treatment of tendon injury.


Asunto(s)
Nanofibras , Traumatismos de los Tendones , Humanos , Tendones , Traumatismos de los Tendones/terapia , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA