RESUMEN
We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7-4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.
RESUMEN
We report the first result of a direct search for a cosmic axion background (CaB)-a relativistic background of axions that is not dark matter-performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX). Conventional haloscope analyses search for a signal with a narrow bandwidth, as predicted for dark matter, whereas the CaB will be broad. We introduce a novel analysis strategy, which searches for a CaB induced daily modulation in the power measured by the haloscope. Using this, we repurpose data collected to search for dark matter to set a limit on the axion photon coupling of a CaB originating from dark matter cascade decay via a mediator in the 800-995 MHz frequency range. We find that the present sensitivity is limited by fluctuations in the cavity readout as the instrument scans across dark matter masses. Nevertheless, we suggest that these challenges can be surmounted using superconducting qubits as single photon counters, and allow ADMX to operate as a telescope searching for axions emerging from the decay of dark matter. The daily modulation analysis technique we introduce can be deployed for various broadband rf signals, such as other forms of a CaB or even high-frequency gravitational waves.
RESUMEN
We report the direct observation of an electrically-induced magnetic susceptibility in the molecular nano- magnet [Fe3O(O2CPh)6(py)3]ClO4·py, an Fe3 trimer. This magnetoelectric effect results from the breaking of spatial inversion symmetry due to the spin configurations of the antiferromagnetic trimer. Both static and very low frequency electric fields were used. Fractional changes of the magnetic susceptibility of 11 ppb[Formula: see text] per kVm-1 for the temperature range 8.5 < T < 13.5 K were observed for applied electric fields up to 62 kV m-1. The changes in susceptibility were measured using a tunnel diode oscillator operating at liquid helium temperatures while the sample is held at a higher regulated temperature.
RESUMEN
We report the results from a haloscope search for axion dark matter in the 3.3-4.2 µeV mass range. This search excludes the axion-photon coupling predicted by one of the benchmark models of "invisible" axion dark matter, the Kim-Shifman-Vainshtein-Zakharov model. This sensitivity is achieved using a large-volume cavity, a superconducting magnet, an ultra low noise Josephson parametric amplifier, and sub-Kelvin temperatures. The validity of our detection procedure is ensured by injecting and detecting blind synthetic axion signals.
RESUMEN
Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 µeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature.
RESUMEN
Axions are a promising cold dark matter candidate. Haloscopes, which use the conversion of axions to photons in the presence of a magnetic field to detect axions, are the basis of microwave cavity searches such as the Axion Dark Matter eXperiment (ADMX). To search for lighter, low frequency axions in the sub- 2×10^{-7} eV (50 MHz) range, a tunable lumped-element LC circuit has been proposed. For the first time, through ADMX SLIC (Superconducting LC Circuit Investigating Cold Axions), a resonant LC circuit was used to probe this region of axion mass-coupling space. The detector used a superconducting LC circuit with piezoelectric driven capacitive tuning. The axion mass and corresponding frequency ranges 1.7498-1.7519×10^{-7} eV (42.31-42.36 MHz), 1.7734-1.7738×10^{-7} eV (42.88-42.89 MHz), and 1.8007-1.8015×10^{-7} eV (43.54-43.56 MHz) were covered at magnetic fields of 4.5 T, 5.0 T, and 7.0 T, respectively. Exclusion results from the search data, for coupling below 10^{-12} GeV^{-1}, are presented.
RESUMEN
This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 µeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics.
RESUMEN
This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 µeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
RESUMEN
The µeV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX "Sidecar," which is designed to pave the way for future, higher mass, searches. This testbed experiment lives inside of and operates in tandem with the main ADMX experiment. The Sidecar experiment excludes masses in three widely spaced frequency ranges (4202-4249, 5086-5799, and 7173-7203 MHz). In addition, Sidecar demonstrates the successful use of a piezoelectric actuator for cavity tuning. Finally, this publication is the first to report data measured using both the TM_{010} and TM_{020} modes.
RESUMEN
A review is given of recent NMR experiments at ultra-low temperatures that explore properties of quantum fluids and solids in regimes where unusual dynamics characterizes the low temperature behavior. It is shown how careful analysis of the NMR spin-spin and spin-lattice relaxation rates and spectral properties can determine fundamental thermodynamic features that are otherwise difficult to observe using standard thermodynamic methods. The review focuses on the observation of the diffusion of vacancies and isotopic impurities in solid hydrogen and solid helium by quantum tunneling at low temperatures.
RESUMEN
In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above â¼8 µeV (â¼2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.
RESUMEN
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb2Ti2O7 below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase is characterized by frequency- and amplitude-dependent susceptibility and extremely slow spin dynamics. In the zero-temperature limit, it extends to about 67 mT (the internal field H(int)≃52 mT), at which it makes transition to another phase. The field dependence of the susceptibility of this second phase, which extends to about 0.60 T (H(int)≃0.54 T) in the zero-temperature limit, indicates the presence of a weak magnetization plateau below about 50 mK, as has been predicted by a single-tetrahedron four-spin model, suggesting that the second phase is a quantum kagome ice.
RESUMEN
The dynamics of (3)He atoms in solid (4)He have been investigated by measuring the NMR relaxation times T(1) and T(2) in the region where a significant nonclassical rotational inertia fraction has been reported. For (3)He concentrations x(3)=16 and 24 ppm, changes are observed for both the spin-lattice relaxation time T(1) and the spin-spin relaxation time T(2) at the temperatures corresponding to the onset of the nonclassical rotational inertia fraction and, at lower temperatures, to the (3)He-(4)He phase separation. The magnitudes of T(1) and T(2) at temperatures above the phase separation agree roughly with existing theory based on the tunneling of (3)He impurities in the elastic strain field due to isotopic mismatch. However, a distinct peak in T(1) and a less well-resolved feature in T(2) are observed near the reported nonclassical rotational inertia fraction onset temperature, in contrast to the temperature-independent relaxation times predicted by the tunneling theory.
RESUMEN
We compare the energy gap of the ν = 5/2 fractional quantum Hall effect state obtained in conventional high mobility modulation-doped quantum-well samples with those obtained in high quality GaAs transistors (heterojunction insulated gate field-effect transistors). We are able to identify the different roles that long-range and short-range disorders play in the 5/2 state and observe that the long-range potential fluctuations are more detrimental to the strength of the 5/2 state than short-range potential disorder.
RESUMEN
In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl2-4SC(NH2)_{2} using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H_{c1} approximately 2 T and a upper critical field H_{c2} approximately 12 T. The results show a power-law temperature dependence of the phase transition line H_{c1}(T)-H_{c1}(0)=aT;{alpha} with alpha=1.47+/-0.10 and H_{c1}(0)=2.053 T, consistent with the 3D BEC universality class. Near H_{c2}, a kink was found in the phase boundary at approximately 150 mK.
RESUMEN
The viscosity is measured for a Fermi liquid, a dilute 3He-4He mixture, under extremely high magnetic field/temperature conditions (B
RESUMEN
We have observed quantization of the diagonal resistance, R(xx), at the edges of several quantum Hall states. Each quantized R(xx) value is close to the difference between the two adjacent Hall plateaus in the off-diagonal resistance, R(xy). Peaks in R(xx) occur at different positions in positive and negative magnetic fields. Practically all R(xx) features can be explained quantitatively by a 1%/cm electron density gradient. Therefore, R(xx) is determined by R(xy) and unrelated to the diagonal resistivity rho(xx). Our findings throw an unexpected light on the empirical resistivity rule for 2D systems.
RESUMEN
We have investigated the behavior of electronic phases of the second Landau level under tilted magnetic fields. The fractional quantum Hall liquids at nu=2+1/5 and 2+4/5 and the solid phases at nu=2.30, 2.44, 2.57, and 2.70 are quickly destroyed with tilt. This behavior can be interpreted as a tilt driven localization of the 2+1/5 and 2+4/5 fractional quantum Hall liquids and a delocalization through the melting of solid phases in the top Landau level, respectively. The evolution towards the classical Hall gas of the solid phases is suggestive of antiferromagnetic ordering.
RESUMEN
At a very low-temperature of 9 mK, electrons in the second Landau level of an extremely high-mobility two-dimensional electron system exhibit a very complex electronic behavior. With a varying filling factor, quantum liquids of different origins compete with several insulating phases leading to an irregular pattern in the transport parameters. We observe a fully developed nu=2+2/5 state separated from the even-denominator nu=2+1/2 state by an insulating phase and a nu=2+2/7 and nu=2+1/5 state surrounded by such phases. A developing plateau at nu=2+3/8 points to the existence of other even-denominator states.
RESUMEN
Spin-echo experiments are reported for 3He-4He solutions under extremely high B/T conditions, B=14.75 T and T>or=1.73 mK. The 3He concentration x(3) was adjusted close to the value x(c) approximately 3.8% at which the spin-rotation parameter muM0 vanishes. In this way the transverse and longitudinal spin-diffusion coefficients D( perpendicular ),D( parallel ) were measured while keeping |muM(0)|<1. It is found that the temperature dependence of D( perpendicular ) deviates strongly from 1/T(2), with anisotropy temperature T(a)=4.26(+0.18)(-0.44) mK. This value is close to the theoretical prediction for dilute solutions and suggests that spin current relaxation remains finite as the temperature tends to zero.