Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Neurooncol Adv ; 6(1): vdae135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220243

RESUMEN

Background: In many cancers, specific subtypes are more prevalent in specific racial backgrounds. However, little is known about the racial distribution of specific molecular types of brain tumors. Public data repositories lack data on many brain tumor subtypes as well as diagnostic annotation using the current World Health Organization classification. A better understanding of the prevalence of brain tumors in different racial backgrounds may provide insight into tumor predisposition and development, and improve prevention. Methods: We retrospectively analyzed the racial distribution of 1709 primary brain tumors classified by their methylation profiles using clinically validated whole genome DNA methylation. Self-reported race was obtained from medical records. Our cohort included 82% White, 10% Black, and 8% Asian patients with 74% of patients reporting their race. Results: There was a significant difference in the racial distribution of specific types of brain tumors. Blacks were overrepresented in pituitary adenomas (35%, P < .001), with the largest proportion of FSH/LH subtype. Whites were underrepresented at 47% of all pituitary adenoma patients (P < .001). Glioblastoma (GBM) IDH wild-type showed an enrichment of Whites, at 90% (P < .001), and a significantly smaller percentage of Blacks, at 3% (P < .001). Conclusions: Molecularly classified brain tumor groups and subgroups show different distributions among the three main racial backgrounds suggesting the contribution of race to brain tumor development.

2.
Neuro Oncol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107236

RESUMEN

According to the new WHO classification of 2021, gliomas are a heterogeneous group of tumors with very different histology, molecular genetics and prognoses. In addition to glioblastomas, the most common gliomas, there are also numerous less common gliomas, some of which have a very favorable prognosis. Targeted radionuclide therapy is a therapeutic option that can be attractive if a tumor can be targeted based on its molecular characteristics. It is particularly useful when tumors cannot be completely resected or when conventional imaging does not fully capture the extent of the tumor. Numerous approaches to radionuclide therapy for gliomas are in early development. The most advanced approaches for patients with gliomas in the clinic employ L-type amino acid transporter 1 as an uptake mechanism for radiolabeled amino acids or target somatostatin receptor 2 or gastrin-releasing peptide receptor. Here, we discuss the various target structures of radionuclide therapy in gliomas and provide an outlook for which glioma entities radionuclide therapy could most likely provide a therapeutic alternative.

3.
JCI Insight ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190500

RESUMEN

Tumor-educated platelets (TEPs) are a potential method of liquid biopsy for the diagnosis and monitoring of cancer. However, the mechanism underlying tumor education of platelets is not known, and transcripts associated with TEPs are often not tumor-associated transcripts. We demonstrated that direct tumor transfer of transcripts to circulating platelets is an unlikely source of the TEP signal. We used CDSeq, a latent Dirichlet allocation algorithm, to deconvolute the TEP signal in blood samples from patients with glioblastoma. We demonstrated that a substantial proportion of transcripts in the platelet transcriptome are derived from non-platelet cells, and the use of this algorithm allows the removal of contaminant transcripts. Furthermore, we used the results of this algorithm to demonstrate that TEPs represent a subset of more activated platelets, which also contain transcripts normally associated with non-platelet inflammatory cells, suggesting that these inflammatory cells, possibly in the tumor microenvironment, transfer transcripts to platelets that are then found in circulation. Our analysis suggests a useful and efficient method of processing TEP transcriptomic data to enable the isolation of a unique TEP signal associated with specific tumors.

4.
Neurosurgery ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194227

RESUMEN

BACKGROUND AND OBJECTIVES: Stereotactic radiosurgery (SRS) is effective for patients with medically refractory trigeminal neuralgia with a 75%-90% response rate. Consideration of the integral dose (ID) to the target nerve within the 50% isodose line was reported to help select prescription doses to maximize effectiveness and minimize bothersome numbness. The objective of this study was to externally validate the ID as a predictor of outcomes after SRS. METHODS: We reviewed the outcomes and parameters of 94 consecutive patients of type 1 trigeminal neuralgia who had SRS for the first time where nerve ID was calculated. 70% of the prescription doses were 80 Gy, with 28% at 85 Gy, and 2% at 70 Gy. RESULTS: The median follow-up time was 14.4 months. A total of 85 (90%) patients reported significant pain relief (Barrow Neurological Institute I-III) after initial SRS. The median pain recurrence-free survival was 82 months (95% CI 41.1-NA), and estimates at 1, 3, and 5 years were 80.5%, 65.5%, and 55.9%, respectively. The ID was not significantly associated with initial pain relief, or affect the risk of pain recurrence or sensory dysfunction after SRS using the Cox proportional hazards model. A nerve mean dose ≥65 Gy was associated with a reduced risk of pain recurrence on multivariate analysis (hazard ratio 0.408, P = .039). Twenty (21%) patients experienced sensory dysfunction after SRS with 3 (3%) requiring further medications, which was not correlated with the prescription dose or brainstem maximum dose. CONCLUSION: The ID did not predict recurrence-free survival or sensory dysfunction. Our observations suggest improved nerve coverage by the most powerful area of the isocenter, for instance, by targeting a narrower segment if feasible, could result in more durable pain relief. Further studies to validate these findings are needed.

6.
Neuro Oncol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695575

RESUMEN

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

7.
Neuro Oncol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702966

RESUMEN

Meningiomas are the most common intracranial neoplasms in adults. While most meningiomas are cured by resection, further treatment by radiotherapy may be needed, particularly in WHO grade 2 and 3 tumors which have an increased risk of recurrence, even after conventional therapies. Still, there is an urgent need for novel therapeutic strategies after exhaustion of local treatment approaches. Radionuclide therapies combine the specificity of tumor-specific antibodies or ligands with the cytotoxic activity of radioactive emitters. Alongside, integrated molecular imaging allows for a non-invasive assessment of predictive biomarkers as treatment targets. Whereas the concept of "theranostics" has initially evolved in extracranial tumors such as thyroid diseases, neuroendocrine tumors, and prostate cancer, data from retrospective case series and early phase trials underscore the potential of this strategy in meningioma. This review aims to explore the available evidence of radionuclide treatments and ongoing clinical trial initiatives in meningioma. Moreover, we discuss optimal clinical trial design and future perspectives in the field, including compound- and host-specific determinants of the efficacy of "theranostic" treatment approaches.

8.
Neuro Oncol ; 26(8): 1367-1387, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770568

RESUMEN

DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.


Asunto(s)
Neoplasias Encefálicas , Daño del ADN , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Investigación Biomédica Traslacional , Animales , Reparación del ADN , Glioma/genética , Glioma/terapia , Glioma/patología , Consenso , Mutación
9.
Genes Dev ; 38(5-6): 273-288, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38589034

RESUMEN

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animales , Ratones , Glioblastoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Haploinsuficiencia , Glioma/genética , Fosfohidrolasa PTEN/genética , Hidrolasas Diéster Fosfóricas/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética
10.
Neuro Oncol ; 26(6): 1042-1051, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243818

RESUMEN

BACKGROUND: Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS: We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS: There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS: The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.


Asunto(s)
Astrocitoma , Biomarcadores de Tumor , Neoplasias Encefálicas , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Metilación de ADN , Isocitrato Deshidrogenasa , Mutación , Humanos , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/mortalidad , Isocitrato Deshidrogenasa/genética , Masculino , Pronóstico , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Adulto , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Anciano , Tasa de Supervivencia , Estudios de Seguimiento , Adulto Joven , Homocigoto , Eliminación de Gen
11.
J Neurooncol ; 166(2): 303-307, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38194196

RESUMEN

PURPOSE: The expression of PD-L1 in high-grade meningiomas made it a potential target for immunotherapy research in refractory cases. Several prospective studies in this field are still on going. We sought to retrospectively investigate the effects of check-point inhibitors (CI) on meningiomas that had been naïve to either surgical or radiation approaches by following incidental meningiomas found during treatment with CI for various primary metastatic cancers. METHODS: We used the NYU Perlmutter Cancer Center Data Hub to find patients treated by CI for various cancers, who also had serial computerized-tomography (CT) or magnetic-resonance imaging (MRI) reports of intracranial meningiomas. Meningioma volumetric measurements were compared between the beginning and end of the CI treatment period. Patients treated with chemotherapy during this period were excluded. RESULTS: Twenty-five patients were included in our study, of which 14 (56%) were on CI for melanoma, 5 (20%) for non-small-cell lung cancer and others. CI therapies included nivolumab (n = 15, 60%), ipilimumab (n = 11, 44%) and pembrolizumab (n = 9, %36), while 9 (36%) were on ipilimumab/nivolumab combination. We did not find any significant difference between tumor volumes before and after treatment with CI (1.31 ± 0.46 vs. 1.34 ± 0.46, p=0.8, respectively). Among patients beyond 1 year of follow-up (n = 13), annual growth was 0.011 ± 0.011 cm3/year. Five patients showed minor volume reduction of 0.12 ± 0.10 cm3 (21 ± 6% from baseline). We did not find significant predictors of tumor volume reduction. CONCLUSION: Check-point inhibitors may impact the natural history of meningiomas. Additional research is needed to define potential clinical indications and treatment goals.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/terapia , Meningioma/patología , Nivolumab/uso terapéutico , Ipilimumab , Estudios Retrospectivos , Estudios Prospectivos , Inmunoterapia , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/terapia , Neoplasias Meníngeas/patología
12.
Neurosurgery ; 94(1): 154-164, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581437

RESUMEN

BACKGROUND AND OBJECTIVES: Median survival for all patients with breast cancer with brain metastases (BCBMs) has increased in the era of targeted therapy (TT) and with improved local control of intracranial tumors using stereotactic radiosurgery (SRS) and surgical resection. However, detailed characterization of the patients with long-term survival in the past 5 years remains sparse. The aim of this article is to characterize patients with BCBM who achieved long-term survival and identify factors associated with the uniquely better outcomes and to find predictors of mortality for patients with BCBM. METHODS: We reviewed 190 patients with breast cancer with 931 brain tumors receiving SRS who were followed at our institution with prospective data collection between 2012 and 2022. We analyzed clinical, molecular, and imaging data to assess relationship to outcomes and tumor control. RESULTS: The median overall survival from initial SRS and from breast cancer diagnosis was 25 months (95% CI 19-31 months) and 130 months (95% CI 100-160 months), respectively. Sixteen patients (17%) achieved long-term survival (survival ≥5 years from SRS), 9 of whom are still alive. Predictors of long-term survival included HER2+ status ( P = .041) and treatment with TT ( P = .046). A limited number of patients (11%) died of central nervous system (CNS) causes. A predictor of CNS-related death was the development of leptomeningeal disease after SRS ( P = .025), whereas predictors of non-CNS death included extracranial metastases at first SRS ( P = .017), triple-negative breast cancer ( P = .002), a Karnofsky Performance Status of <80 at first SRS ( P = .002), and active systemic disease at last follow-up ( P = .001). Only 13% of patients eventually needed whole brain radiotherapy. Among the long-term survivors, none died of CNS progression. CONCLUSION: Patients with BCBM can achieve long-term survival. The use of TT and HER2+ disease are associated with long-term survival. The primary cause of death was extracranial disease progression, and none of the patients living ≥5 years died of CNS-related disease.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Radiocirugia , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias Encefálicas/secundario , Radiocirugia/métodos , Sistema Nervioso Central , Estudios Retrospectivos
13.
Clin Cancer Res ; 30(4): 680-686, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38048045

RESUMEN

PURPOSE: There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS: Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after the start of the treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS: Fourteen patients (female = 11, male = 3) with progressive meningiomas (WHO 1 = 3, 2 = 10, 3 = 1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE uptake (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS: Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Tumores Neuroendocrinos , Octreótido/análogos & derivados , Compuestos Organometálicos , Receptores de Somatostatina , Adulto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Meningioma/diagnóstico por imagen , Meningioma/radioterapia , Meningioma/tratamiento farmacológico , Radiofármacos , Compuestos Organometálicos/efectos adversos , Tomografía de Emisión de Positrones/métodos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/tratamiento farmacológico , Biomarcadores , Tumores Neuroendocrinos/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones
14.
Int J Radiat Oncol Biol Phys ; 119(3): 846-857, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101486

RESUMEN

PURPOSE: Whole-brain radiation therapy (WBRT) is a common treatment for brain metastases and is frequently associated with decline in neurocognitive functioning (NCF). The e4 allele of the apolipoprotein E (APOE) gene is associated with increased risk of Alzheimer disease and NCF decline associated with a variety of neurologic diseases and insults. APOE carrier status has not been evaluated as a risk factor for onset time or extent of NCF impairment in patients with brain metastases treated with WBRT. METHODS AND MATERIALS: NRG/Radiation Therapy Oncology Group 0614 treated adult patients with brain metastases with 37.5 Gy of WBRT (+/- memantine), performed longitudinal NCF testing, and included an optional blood draw for APOE analysis. NCF test results were compared at baseline and over time with mixed-effects models. A cause-specific Cox model for time to NCF failure was performed to assess the effects of treatment arm and APOE carrier status. RESULTS: APOE results were available for 45% of patients (n = 227/508). NCF did not differ by APOE e4 carrier status at baseline. Mixed-effects modeling showed that APOE e4 carriers had worse memory after WBRT compared with APOE e4 noncarriers (Hopkins Verbal Learning Test-Revised total recall [least square mean difference, 0.63; P = .0074], delayed recognition [least square mean difference, 0.75; P = .023]). However, APOE e4 carrier status was not associated with time to NCF failure (hazard ratio, 0.86; 95% CI, 0.60-1.23; P = .40). Memantine delayed the time to NCF failure, regardless of carrier status (hazard ratio, 0.72; 95% CI, 0.52-1.01; P = .054). CONCLUSIONS: APOE e4 carriers with brain metastases exhibited greater decline in learning and memory, executive function, and the Clinical Trial Battery Composite score after treatment with WBRT (+/- memantine), without acceleration of onset of difference in time to NCF failure.


Asunto(s)
Neoplasias Encefálicas , Memantina , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Cognición/efectos de la radiación , Irradiación Craneana/efectos adversos , Genotipo , Heterocigoto , Memantina/uso terapéutico , Modelos de Riesgos Proporcionales
16.
Neurosurgery ; 93(5): 1112-1120, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326435

RESUMEN

BACKGROUND AND OBJECTIVES: Dose selection for brain metastases stereotactic radiosurgery (SRS) classically has been based on tumor diameter with a reduction of dose in the settings of prior brain irradiation, larger tumor volumes, and critical brain location. However, retrospective series have shown local control rates to be suboptimal with reduced doses. We hypothesized that lower doses could be effective for specific tumor biologies with concomitant systemic therapies. This study aims to report the local control (LC) and toxicity when using low-dose SRS in the era of modern systemic therapy. METHODS: We reviewed 102 patients with 688 tumors managed between 2014 and 2021 who had low-margin dose radiosurgery, defined as ≤14 Gy. Tumor control was correlated with demographic, clinical, and dosimetric data. RESULTS: The main primary cancer types were lung in 48 (47.1%), breast in 31 (30.4%), melanoma in 8 (7.8%), and others in 15 patients (11.7%). The median tumor volume was 0.037cc (0.002-26.31 cm 3 ), and the median margin dose was 14 Gy (range 10-14). The local failure (LF) cumulative incidence at 1 and 2 years was 6% and 12%, respectively. On competing risk regression analysis, larger volume, melanoma histology, and margin dose were predictors of LF. The 1-year and 2-year cumulative incidence of adverse radiation effects (ARE: an adverse imaging-defined response includes increased enhancement and peritumoral edema) was 0.8% and 2%. CONCLUSION: It is feasible to achieve acceptable LC in BMs with low-dose SRS. Volume, melanoma histology, and margin dose seem to be predictors for LF. The value of a low-dose approach may be in the management of patients with higher numbers of small or adjacent tumors with a history of whole brain radio therapy or multiple SRS sessions and in tumors in critical locations with the aim of LC and preservation of neurological function.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Radiocirugia , Humanos , Encéfalo/patología , Neoplasias Encefálicas/patología , Melanoma/secundario , Radiocirugia/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento , Estudios Longitudinales
17.
Neurosurgery ; 93(5): 986-993, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255296

RESUMEN

BACKGROUND AND OBJECTIVES: Advances in targeted therapies and wider application of stereotactic radiosurgery (SRS) have redefined outcomes of patients with brain metastases. Under modern treatment paradigms, there remains limited characterization of which aspects of disease drive demise and in what frequencies. This study aims to characterize the primary causes of terminal decline and evaluate differences in underlying intracranial tumor dynamics in patients with metastatic brain cancer. These fundamental details may help guide management, patient counseling, and research priorities. METHODS: Using NYUMets-Brain-the largest, longitudinal, real-world, open data set of patients with brain metastases-patients treated at New York University Langone Health between 2012 and 2021 with SRS were evaluated. A review of electronic health records allowed for the determination of a primary cause of death in patients who died during the study period. Causes were classified in mutually exclusive, but collectively exhaustive, categories. Multilevel models evaluated for differences in dynamics of intracranial tumors, including changes in volume and number. RESULTS: Of 439 patients with end-of-life data, 73.1% died secondary to systemic disease, 10.3% died secondary to central nervous system (CNS) disease, and 16.6% died because of other causes. CNS deaths were driven by acute increases in intracranial pressure (11%), development of focal neurological deficits (18%), treatment-resistant seizures (11%), and global decline driven by increased intracranial tumor burden (60%). Rate of influx of new intracranial tumors was almost twice as high in patients who died compared with those who survived ( P < .001), but there was no difference in rates of volume change per intracranial tumor ( P = .95). CONCLUSION: Most patients with brain metastases die secondary to systemic disease progression. For patients who die because of neurological disease, tumor dynamics and cause of death mechanisms indicate that the primary driver of decline for many may be unchecked systemic disease with unrelenting spread of new tumors to the CNS rather than failure of local growth control.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Encéfalo/patología , Neoplasias Encefálicas/cirugía , Causas de Muerte , Estudios Retrospectivos
18.
Front Neurol ; 14: 1112207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082446

RESUMEN

Introduction: Improved therapies for glioblastoma (GBM) are desperately needed and require preclinical evaluation in models that capture tumor heterogeneity and intrinsic resistance seen in patients. Epigenetic alterations have been well documented in GBM and lysine-specific demethylase 1 (LSD1/KDM1A) is amongst the chromatin modifiers implicated in stem cell maintenance, growth and differentiation. Pharmacological inhibition of LSD1 is clinically relevant, with numerous compounds in various phases of preclinical and clinical development, but an evaluation and comparison of LSD1 inhibitors in patient-derived GBM models is lacking. Methods: To assess concordance between knockdown of LSD1 and inhibition of LSD1 using a prototype inhibitor in GBM, we performed RNA-seq to identify genes and biological processes associated with inhibition. Efficacy of various LSD1 inhibitors was assessed in nine patient-derived glioblastoma stem cell (GSC) lines and an orthotopic xenograft mouse model. Results: LSD1 inhibitors had cytotoxic and selective effects regardless of GSC radiosensitivity or molecular subtype. In vivo, LSD1 inhibition via GSK-LSD1 led to a delayed reduction in tumor burden; however, tumor regrowth occurred. Comparison of GBM lines by RNA-seq was used to identify genes that may predict resistance to LSD1 inhibitors. We identified five genes that correlate with resistance to LSD1 inhibition in treatment resistant GSCs, in GSK-LSD1 treated mice, and in GBM patients with low LSD1 expression. Conclusion: Collectively, the growth inhibitory effects of LSD1 inhibition across a panel of GSC models and identification of genes that may predict resistance has potential to guide future combination therapies.

19.
Neurosurgery ; 93(1): 50-59, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722962

RESUMEN

BACKGROUND: Brain metastases (BM) have long been considered a terminal diagnosis with management mainly aimed at palliation and little hope for extended survival. Use of brain stereotactic radiosurgery (SRS) and/or resection, in addition to novel systemic therapies, has enabled improvements in overall and progression-free (PFS) survival. OBJECTIVE: To explore the possibility of extended survival in patients with non-small-cell lung cancer (NSCLC) BM in the current era. METHODS: During the years 2008 to 2020, 606 patients with NSCLC underwent their first Gamma Knife SRS for BM at our institution with point-of-care data collection. We reviewed clinical, molecular, imaging, and treatment parameters to explore the relationship of such factors with survival. RESULTS: The median overall survival was 17 months (95% CI, 13-40). Predictors of increased survival in a multivariable analysis included age <65 years ( P < .001), KPS ≥80 ( P < .001), absence of extracranial metastases ( P < .001), fewer BM at first SRS (≤3, P = .003), and targeted therapy ( P = .005), whereas chemotherapy alone was associated with shorter survival ( P = .04). In a subgroup of patients managed before 2016 (n = 264), 38 (14%) were long-term survivors (≥5 years), of which 16% required no active cancer treatment (systemic or brain) for ≥3 years by the end of their follow-up. CONCLUSION: Long-term survival in patients with brain metastases from NSCLC is feasible in the current era of SRS when combined with the use of effective targeted therapeutics. Of those living ≥5 years, the chance for living with stable disease without the need for active treatment for ≥3 years was 16%.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Radiocirugia/métodos , Neoplasias Encefálicas/patología
20.
Neuro Oncol ; 25(2): 339-350, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35849035

RESUMEN

BACKGROUND: Approximately 50% of newly diagnosed glioblastomas (GBMs) harbor epidermal growth factor receptor gene amplification (EGFR-amp). Preclinical and early-phase clinical data suggested efficacy of depatuxizumab mafodotin (depatux-m), an antibody-drug conjugate comprised of a monoclonal antibody that binds activated EGFR (overexpressed wild-type and EGFRvIII-mutant) linked to a microtubule-inhibitor toxin in EGFR-amp GBMs. METHODS: In this phase III trial, adults with centrally confirmed, EGFR-amp newly diagnosed GBM were randomized 1:1 to radiotherapy, temozolomide, and depatux-m/placebo. Corneal epitheliopathy was treated with a combination of protocol-specified prophylactic and supportive measures. There was 85% power to detect a hazard ratio (HR) ≤0.75 for overall survival (OS) at a 2.5% 1-sided significance level (ie traditional two-sided p ≤ 0.05) by log-rank testing. RESULTS: There were 639 randomized patients (median age 60, range 22-84; 62% men). Prespecified interim analysis found no improvement in OS for depatux-m over placebo (median 18.9 vs. 18.7 months, HR 1.02, 95% CI 0.82-1.26, 1-sided p = 0.63). Progression-free survival was longer for depatux-m than placebo (median 8.0 vs. 6.3 months; HR 0.84, 95% confidence interval [CI] 0.70-1.01, p = 0.029), particularly among those with EGFRvIII-mutant (median 8.3 vs. 5.9 months, HR 0.72, 95% CI 0.56-0.93, 1-sided p = 0.002) or MGMT unmethylated (HR 0.77, 95% CI 0.61-0.97; 1-sided p = 0.012) tumors but without an OS improvement. Corneal epitheliopathy occurred in 94% of depatux-m-treated patients (61% grade 3-4), causing 12% to discontinue. CONCLUSIONS: Interim analysis demonstrated no OS benefit for depatux-m in treating EGFR-amp newly diagnosed GBM. No new important safety risks were identified.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Masculino , Humanos , Persona de Mediana Edad , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Anticuerpos Monoclonales Humanizados , Temozolomida/uso terapéutico , Receptores ErbB , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA