Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(5): 1838-1851, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36701815

RESUMEN

Safflower (Carthamus tinctorius L.) is a potent natural antioxidant because of active compounds such as quercetin (QU) and luteolin (LU). These components prevent damage to the skin caused by free radicals from UV rays. However, due to the poor solubility and transdermal permeation, the effectiveness of the compounds in showing their activity was limited. In this study, we develop solid lipid nanoparticle (SLN)-based hydrogel formulations to enhance the solubility and penetration of two bioactive compounds found in safflower petals extract (SPE). The hot emulsification-ultrasonication method was used to produce SLNs, and to obtain high antioxidant activity, 100% v/v ethanol was used in the extraction procedure. The results showed that this approach could encapsulate >80% of both QU and LU. Moreover, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) spectra indicated that most of the QU and LU were trapped in a lipid matrix and dispersed homogeneously at the molecular level, increasing the solubility. Additionally, SLN-hydrogel composites are able to release two lipophilic bioactive compounds for 24 h, which also demonstrated increased skin retention and penetrability of the QU and LU up to 19-fold. In vitro blood biocompatibility showed that no hemolytic toxicity was observed below 500 µg/mL. Accordingly, the formulation was considered safe for use. Sun protective factor (SPF) test shows a value above 15, showing an excellent promising application as the photoprotective agent to prevent symptoms associated with photoinduced skin aging.


Asunto(s)
Carthamus tinctorius , Nanopartículas , Antioxidantes/farmacología , Hidrogeles/toxicidad , Hidrogeles/química , Piel , Nanopartículas/química , Polímeros , Tamaño de la Partícula , Rastreo Diferencial de Calorimetría
2.
Int J Pharm ; 607: 121011, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34391850

RESUMEN

This work aimed to develop a subcutaneous implant for prolonged delivery of LEVO to treat hypothyroidism. This could overcome challenges with patient compliance and co-administration and could improve treatment of this condition. For this purpose, implants were produced by solvent casting mixtures of poly(caprolactone) (PCL), poly(ethylene glycol) (PEG) and LEVO sodium. These implants contained mixtures of PCL of differing molecular weight, PEG and different LEVO sodium loadings (20% or 40% w/w). SEM images confirmed that the drug was evenly dispersed throughout the implant. In vitro release rates ranging from 28.37 ± 1.19 - 78.21 ± 19.93 µg/day and 47.39 ± 8.76 - 98.92 ± 4.27 µg/day were achieved for formulations containing 20% and 40% w/w drug loading, respectively. Implants containing higher amounts of low molecular weight PCL and 40% w/w of LEVO showed release profiles governed by zero order kinetics. On the other hand, implants containing higher amounts of high molecular weight PCL showed a release mechanism governed by Fickian diffusion. Finally, two representative formulations were tested in vivo. These implants were capable of providing detectable LEVO levels in plasma during the entire duration of the experiments (4 weeks) with LEVO plasma levels ranging between 5 and 20 ng/mL.


Asunto(s)
Poliésteres , Tiroxina , Composición de Medicamentos , Humanos , Polietilenglicoles
3.
ACS Appl Mater Interfaces ; 13(15): 18128-18141, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33840187

RESUMEN

The poor solubility of itraconazole (ITZ) has limited its efficacy in the treatment of vaginal candidiasis. Accordingly, the improvement of ITZ solubility using a solid dispersion technique was important to enhance its antifungal activity. Besides, as the purpose of this research was to develop local-targeting formulations, bioadhesive-thermosensitive in situ vaginal gel combined with the gel-flake system was found to be the most suitable choice. To obtain optimum solubility, entrapment efficiency, and drug-loading capacity, optimization of solid dispersion (SD) and gel-flake formulations of ITZ was performed using a composite central design. The results showed that the optimized formulation of SD-ITZ was able to significantly enhance its solubility in both water and simulated vaginal fluid to reach the values of 4.211 ± 0.23 and 4.291 ± 0.21 mg/mL, respectively. Additionally, the optimized formulation of SD-ITZ gel flakes possessed desirable entrapment efficiency and drug-loading capacity. The in situ vaginal gel containing SD-ITZ gel flakes was prepared using PF-127 and PF-68, as the gelling agents, with the addition of hydroxypropyl methylcellulose (HPMC) as the mucoadhesive polymer. It was found that the obtained in situ vaginal gel provided desirable physicochemical properties and was able to retain an amount of more than 4 mg of ITZ in the vaginal tissue after 8 h. Importantly, according to the in vivo antifungal activity using infection animal models, the incorporation of the solid dispersion technique and gel-flake system in the formulation of the bioadhesive-thermosensitive in situ vaginal gel led to the most significant decrease of the growth of Candida albicans reaching <1 log colony-forming units (CFU)/mL or equivalent to <10% of the total colony after 14 days, indicating the improvement of ITZ antifungal activity compared to other treated groups. Therefore, these studies confirmed a great potential to enhance the efficacy of ITZ in treating vaginal candidiasis. Following these findings, several further experiments need to be performed to ensure acceptability and usability before the research reaches the clinical stage.


Asunto(s)
Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Itraconazol/farmacología , Temperatura , Vagina/microbiología , Adhesividad , Animales , Antifúngicos/química , Antifúngicos/uso terapéutico , Femenino , Itraconazol/química , Itraconazol/uso terapéutico , Ratas , Solubilidad , Cremas, Espumas y Geles Vaginales/química , Cremas, Espumas y Geles Vaginales/farmacología , Cremas, Espumas y Geles Vaginales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA