Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto principal
Asunto de la revista
Intervalo de año de publicación
1.
Trends Plant Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019767

RESUMEN

The year 2023 was the warmest year since 1850. Greenhouse gases, including CO2 and methane, played a significant role in increasing global warming. Among these gases, methane has a 25-fold greater impact on global warming than CO2. Methane is emitted during rice cultivation by a group of rice rhizosphere microbes, termed methanogens, in low oxygen (hypoxic) conditions. To reduce methane emissions, it is crucial to decrease the methane production capacity of methanogens through water and fertilizer management, breeding of new rice cultivars, regulating root exudation, and manipulating rhizosphere microbiota. In this opinion article we review the recent developments in hypoxia ecology and methane emission mitigation and propose potential solutions based on the manipulation of microbiota and methanogens for the mitigation of methane emissions.

2.
Environ Int ; 190: 108913, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39079335

RESUMEN

The emergence of waterlogged Oryza species ∼15Mya (million years ago) supplied an anoxic warm bed for methane-producing microorganisms, and methane emissions have hence accompanied the entire evolutionary history of the genus Oryza. However, to date no study has addressed how methane emission has been altered during Oryza evolution. In this paper we used a diverse collection of wild and cultivated Oryza species to study the relation between Oryza evolution and methane emissions. Phylogenetic analyses and methane detection identified a co-evolutionary pattern between Oryza and methane emissions, mediated by the diversity of the rhizospheric ecosystems arising from different oxygen levels. Fumarate was identified as an oxygen substitute used to retain the electron transport/energy production in the anoxic rice root, and the contribution of fumarate reductase to Oryza evolution and methane emissions has also been assessed. We confirmed the between-species patterns using genetic dissection of the traits in a cross between a low and high methane-emitting species. Our findings provide novel insights on the evolutionary processes of rice paddy methane emissions: the evolution of wild rice produces different Oryza species with divergent rhizospheric ecosystem attributing to the different oxygen levels and fumarate reductase activities, methane emissions are comprehensively assessed by the rhizospheric environment of diversity Oryza species and result in a co-evolution pattern.

3.
Sci Total Environ ; 920: 170980, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38373456

RESUMEN

Global rice cultivation significantly contributes to anthropogenic methane emissions. The methane emissions are caused by methane-producing microorganisms (methanogenic archaea) that are favoured by the anoxic conditions of paddy soils and small carbon molecules released from rice roots. However, different rice cultivars are associated with differences in methane emission rates suggesting that there is a considerable natural variation in this trait. Starting from the hypothesis that sugar allocation within a plant is an important factor influencing both yields and methane emissions, the aim of this study was to produce high-yielding rice lines associated with low methane emissions. In this study, the offspring (here termed progeny lines) of crosses between a newly characterized low-methane rice variety, Heijing 5, and three high-yielding elite varieties, Xiushui, Huayu and Jiahua, were selected for combined low-methane and high-yield properties. Analyses of total organic carbon and carbohydrates showed that the progeny lines stored more carbon in above-ground tissues than the maternal elite varieties. Also, metabolomic analysis of rhizospheric soil surrounding the progeny lines showed reduced levels of glucose and other carbohydrates. The carbon allocation, from roots to shoots, was further supported by a transcriptome analysis using massively parallel sequencing of mRNAs that demonstrated elevated expression of the sugar transporters SUT-C and SWEET in the progeny lines as compared to the parental varieties. Furthermore, measurement of methane emissions from plants, grown in greenhouse as well as outdoor rice paddies, showed a reduction in methane emissions by approximately 70 % in the progeny lines compared to the maternal elite varieties. Taken together, we report here on three independent low-methane-emission rice lines with high yield potential. We also provide a first molecular characterisation of the progeny lines that can serve as a foundation for further studies of candidate genes involved in sugar allocation and reduced methane emissions from rice cultivation.


Asunto(s)
Carbono , Oryza , Carbono/metabolismo , Oryza/metabolismo , Metano/análisis , Suelo , Carbohidratos , Azúcares/metabolismo , Agricultura , Óxido Nitroso/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA