Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Int J Biol Macromol ; 274(Pt 2): 133435, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936580

RESUMEN

Polyether-ether-ketone (PEEK) is clinically used as a bio-implant for the healing of skeletal defects. However, the osseointegration of clinical-sized bone grafts remains limited. In this study, surface-porous PEEK was created by using a sulfonation method and a metal-polysaccharide complex MgCS was introduced on the surface of sulfonated PEEK to form MgCS@SPEEK. The as-prepared MgCS@SPEEK was found to have a porous surface with good hydrophilicity and bioactivity. This was followed by an investigation into whether MgCS loaded onto sulfonated PEEK surfaces could promote osseointegration and angiogenesis. The in vitro results showed that MgCS@SPEEK had a positive effect on reducing the expression levels of inflammatory genes and promoting osteogenesis and angiogenesis-related genes expression levels. Furthermore, porous MgCS@SPEEK was implanted in critical-sized rat tibial defects for in vivo evaluation of osseointegration. The micro-computed tomography evaluation results revealed substantial bone formation at 4 and 8 weeks. Collectively, these findings indicate that MgCS@SPEEK could provide improved osseointegration and an attractive strategy for orthopaedic applications.

2.
Int Immunopharmacol ; 137: 112504, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897127

RESUMEN

Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.


Asunto(s)
Antiinflamatorios , Retinopatía Diabética , Flavonoides , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Piperidinas , Flavonoides/uso terapéutico , Flavonoides/farmacología , Animales , Humanos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratones , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico
3.
Aging (Albany NY) ; 16(9): 8044-8069, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742956

RESUMEN

Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which cellular senescence leads to AMD remains unclear. Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and miRNAs. We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death (PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic mechanisms and therapeutic targets. In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, revealing their differential roles in programmed cell death, disease progression, and immune microenvironments within AMD.


Asunto(s)
Senescencia Celular , Biología Computacional , Degeneración Macular , Senescencia Celular/genética , Degeneración Macular/genética , Degeneración Macular/diagnóstico , Degeneración Macular/patología , Humanos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Aprendizaje Automático , MicroARNs/genética , MicroARNs/metabolismo
4.
Exp Ther Med ; 28(1): 281, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38800051

RESUMEN

Infection is known to occur in a substantial proportion of patients following spinal surgery and predictive modeling may provide a useful means for identifying those at higher risk of complications and poor prognosis, which could help optimize pre- and postoperative management strategies. The outcome measure of the present study was to investigate the occurrence of all-cause infection during hospitalization following scoliosis surgery. To meet this aim, the present study retrospectively analyzed 370 patients who underwent surgery at the Second Affiliated Hospital, Zhejiang University School of Medicine (Hangzhou, China) between January 2016 and October 2022, and patients who either experienced or did not experience all-cause infection while in hospital were compared in terms of their clinicodemographic characteristics, surgical variables and laboratory test results. Logistic regression was subsequently applied to data from a subset of patients in order to build a model to predict infection, which was validated using another subset of patients. All-cause, in-hospital postoperative infections were found to have occurred in 66/370 patients (17.8%). The following variables were included in a predictive model: Sex, American Society of Anesthesiologists (ASA) classification, body mass index (BMI), diabetes mellitus, hypertension, preoperative levels of white blood cells and preoperative C-reactive protein (CRP) and duration of surgery. The model exhibited an area under the curve of 0.776 against the internal validation set. In conclusion, dynamic nomograms based on sex, ASA classification, BMI, diabetes mellitus, hypertension, preoperative levels of white blood cells and CRP and duration of surgery may have the potential to be a clinically useful predictor of all-cause infection following scoliosis. The predictive model constructed in the present study may potentially facilitate the real-time visualization of risk factors associated with all-cause infection following surgical procedures.

5.
Pain Ther ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809395

RESUMEN

Chronic pain after lung transplantation (LTx) can substantially reduce quality of life (QoL), yet current consensus guidelines say little about how to prevent or manage it. Research on pain after LTx has tended to focus on acute rather than chronic pain, and it has not extensively examined the factors associated with onset or resolution of chronic pain, which differ from factors influencing chronic pain after general thoracic surgery. This narrative review explores what is known about the epidemiology and risk factors of chronic pain after LTx, as well as effective ways to treat or prevent it. The review identifies key questions and issues that should be the focus of future research.

6.
BMC Psychiatry ; 24(1): 179, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439012

RESUMEN

BACKGROUND: People with schizophrenia often face challenges such as lower psychological resilience, reduced self-worth, and increased social stigma, hindering their recovery. Mindfulness-Based Cognitive Therapy (MBCT) has shown promise in boosting psychological resilience and self-esteem while diminishing stigma. However, MBCT demands professional involvement and substantial expenses, adding to the workload of professionals and the financial strain on patients. Mixed-mode Mindfulness-Based Cognitive Therapy (M-MBCT) integrates both "face-to-face" and "self-help" approaches to minimize staff effort and costs. This study aims to assess the impact of M-MBCT on the psychological resilience, self-esteem, and stigma in schizophrenia patients. METHODS: This randomized, controlled, parallel-group, assessor-blinded clinical trial enrolled 174 inpatients with schizophrenia. Participants were randomly assigned to either the experimental or control group. The experimental group underwent an 8-week M-MBCT intervention, while the control group received standard treatment. Data collection employed the Connor-Davidson Resilience Scale (CD-RISC), Internalized Stigma of Mental Illness Scale (ISMI), and Rosenberg Self-Esteem Scale (RSES) before and after the intervention. Post-intervention, significant differences in ISMI, CD-RISC, and RSES scores were observed between the experimental and control groups. RESULTS: In the experimental group, ISMI scores notably decreased, while CD-RISC and RSES scores significantly increased (P < 0.05). Multiple linear regression analysis identified age, education, and family history of mental illness as significant factors related to stigma (P < 0.05). Additionally, correlation analysis indicated a significant negative relationship between the reduction in CD-RISC scores and the reduction in ISMI scores (P < 0.05). CONCLUSION: M-MBCT effectively enhanced psychological resilience and self-esteem while diminishing stigma in individuals with schizophrenia. M-MBCT emerges as a promising treatment option for schizophrenia sufferers. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trial Registry on 03/06/2023 ( www.chictr.org.cn ; ChiCTR ID: ChiCTR2300069071).


Asunto(s)
Terapia Cognitivo-Conductual , Atención Plena , Pruebas Psicológicas , Resiliencia Psicológica , Esquizofrenia , Humanos , Esquizofrenia/terapia , Estigma Social , Pacientes Internos , Autoimagen
7.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470227

RESUMEN

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Asunto(s)
Encéfalo , Hidantoínas , Humanos , Oligodendroglía/metabolismo , Diseño de Fármacos , Hidantoínas/metabolismo
8.
BMC Genomics ; 25(1): 227, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429743

RESUMEN

BACKGROUND: Hybridization capture-based targeted next generation sequencing (NGS) is gaining importance in routine cancer clinical practice. DNA library preparation is a fundamental step to produce high-quality sequencing data. Numerous unexpected, low variant allele frequency calls were observed in libraries using sonication fragmentation and enzymatic fragmentation. In this study, we investigated the characteristics of the artifact reads induced by sonication and enzymatic fragmentation. We also developed a bioinformatic algorithm to filter these sequencing errors. RESULTS: We used pairwise comparisons of somatic single nucleotide variants (SNVs) and insertions and deletions (indels) of the same tumor DNA samples prepared using both ultrasonic and enzymatic fragmentation protocols. Our analysis revealed that the number of artifact variants was significantly greater in the samples generated using enzymatic fragmentation than using sonication. Most of the artifacts derived from the sonication-treated libraries were chimeric artifact reads containing both cis- and trans-inverted repeat sequences of the genomic DNA. In contrast, chimeric artifact reads of endonuclease-treated libraries contained palindromic sequences with mismatched bases. Based on these distinctive features, we proposed a mechanistic hypothesis model, PDSM (pairing of partial single strands derived from a similar molecule), by which these sequencing errors derive from ultrasonication and enzymatic fragmentation library preparation. We developed a bioinformatic algorithm to generate a custom mutation "blacklist" in the BED region to reduce errors in downstream analyses. CONCLUSIONS: We first proposed a mechanistic hypothesis model (PDSM) of sequencing errors caused by specific structures of inverted repeat sequences and palindromic sequences in the natural genome. This new hypothesis predicts the existence of chimeric reads that could not be explained by previous models, and provides a new direction for further improving NGS analysis accuracy. A bioinformatic algorithm, ArtifactsFinder, was developed and used to reduce the sequencing errors in libraries produced using sonication and enzymatic fragmentation.


Asunto(s)
Artefactos , Genoma Humano , Humanos , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , ADN de Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
Inflammation ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436811

RESUMEN

Diabetic retinopathy (DR) is a diabetes-associated complication that poses a threat to vision, distinguished by persistent and mild inflammation of the retinal microvasculature. The activation of microglia plays a crucial role in driving this pathological progression. Previous investigations have demonstrated that ubiquitin-specific peptidase 25 (USP25), a deubiquitinating enzyme, is involved in the regulation of immune cell activity. Nevertheless, the precise mechanisms through which USP25 contributes to the development of DR remain incompletely elucidated. Firstly, we have demonstrated the potential mechanism by which ROCKs can facilitate microglial activation and augment the synthesis of inflammatory mediators through the modulation of NF-κB signaling pathways in a high-glucose milieu. Furthermore, our study has provided novel insights by demonstrating that the regulatory role of USP25 in the secretion of proinflammatory factors is mediated through the involvement of ROCK in modulating the expression of NF-κB and facilitating the nuclear translocation of the phosphatase NF-κB. This regulatory mechanism plays a crucial role in modulating the activation of microglial cells within a high-glycemic environment. Hence, USP25 emerges as a pivotal determinant for the inflammatory activation of microglial cells, and its inhibition exhibits a dual effect of promoting retinal neuron survival while suppressing the inflammatory response in the retina. In conclusion, the promotion of diabetic retinopathy (DR) progression by USP25 is attributed to its facilitation of microglial activation induced by high glucose levels, a process mediated by the ROCK pathway. These findings highlight the importance of considering USP25 as a potential therapeutic target for the management of diabetic neuroinflammation.

10.
MAbs ; 16(1): 2309685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356181

RESUMEN

Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.


Asunto(s)
Anticuerpos , Receptor de Muerte Celular Programada 1 , Conejos , Animales , Ratones , Humanos , Regiones Determinantes de Complementariedad/química , Ingeniería de Proteínas/métodos
11.
Int Immunopharmacol ; 128: 111480, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194747

RESUMEN

BACKGROUND: Retinal ischemia-reperfusion (I/R) serves as a significant contributor to ocular diseases, triggering a cascade of pathological processes. The interplay between neuroinflammation and the apoptosis of retinal ganglion cell (RGC) is a well-explored aspect of retinal I/R-induced tissue damage. Within this intricate landscape, the inflammatory cytokine Interleukin-21 (IL21) emerges as a potent mediator of neuroinflammation with known detrimental effects on neuronal integrity. However, its specific impact on RGC apoptosis in the context of retinal I/R has remains to be uncovered. This study aims to unravel the potential anti-apoptotic effects of IL21 siRNA on RGC, shedding light on the neuroprotection of retinal I/R. METHODS: Sprague-Dawley (SD) rats underwent a controlled elevation of intraocular pressure (IOP) to 110 mmHg for 60 min to simulate retinal I/R conditions. To explore the influence of IL21 on RGC apoptosis and its underlying molecular mechanisms, a comprehensive array of techniques such immunohistochemistry, immunofluorescence, TUNEL, Hematoxylin-eosin (H&E), immunoblotting, and qRT-PCR were carried out. RESULTS: The landscape of retinal I/R injury revealed an increase in the expression of IL21, reaching its peak at 72 h. Notably, IL21 markedly induced RGC apoptosis within the retinal I/R milieu. The introduction of IL21 siRNA showed promising outcomes, manifesting as an amelioration of neurological function deficits, a reduction in RGC loss, and an increase in the thickness of the inner retinal layer at the 72-hour reperfusion. Additionally, IL21 siRNA demonstrated its ability to hinder the release of proteins associated with apoptosis via the JAK/STAT signaling pathway. In the in vitro setting, IL21 siRNA efficiently reduced R28 cell apoptosis by suppressing the production of proteins associated with apoptosis by regulating the JAK/STAT signaling pathway. CONCLUSIONS: This study provides evidence for the pathogenic role of IL21 in retinal I/R. The findings underscore IL21 siRNA as a promising therapeutic target for ischemic retinal injury. Its efficacy lies in its ability to mitigate RGC apoptosis by suppressing the JAK/STAT signaling pathway. These findings not only enhance our comprehension of retinal I/R pathology but also suggests IL21 siRNA as a potential transformative factor in the development of targeted therapies for ischemic retinal injuries.


Asunto(s)
Interleucinas , Daño por Reperfusión , Enfermedades de la Retina , Ratas , Animales , Células Ganglionares de la Retina , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Apoptosis , Enfermedades de la Retina/patología , Daño por Reperfusión/tratamiento farmacológico , Isquemia/metabolismo , ARN Interferente Pequeño/metabolismo
12.
Bioact Mater ; 33: 545-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38162513

RESUMEN

Osteoarthritis (OA) is a common chronic inflammatory disorder. Effective remodeling of inflammatory microenvironment in the joint is a promising strategy to prevent OA. However, current drugs remain unsatisfactory due to a lack of targeted and effective ways for relieving inflammatory conditions in OA joints. Bortezomib (BTZ), a proteasome inhibitor, could effectively inhibit proinflammatory cytokines but with poor accumulation in the inflammatory tissues. To overcome the shortcomings of BTZ delivery and to improve the efficacy of OA therapy, herein, we designed a novel nanomedicine (denoted as BTZ@PTK) by the co-assembly of BTZ and an amphiphilic copolymer (denoted as PTK) with ROS-cleaved thioketal (TK) linkages. The TK units in BTZ@PTK are first cleaved by the excessive ROS at OA sites, and then triggered the controlled release of BTZ, resulting in the accurate delivery and the inflammatory microenvironment remodeling. Accordingly, BTZ@PTK suppressed ROS generation and proinflammatory cytokines while promoting M1 macrophage apoptosis in lipopolysaccharide (LPS)-activated RAW264.7 macrophages or LPS/IFN-γ-treated primary macrophages, which leads to a better effect than BTZ. In OA mice, BTZ@PTK passively accumulates into inflamed joints to attenuate pain sensitivity and gait abnormality. Importantly, BTZ@PTK treatment successfully ameliorates synovitis with the reduction of synovial hyperplasia and synovitis scores by suppressing M1 macrophage polarization and promoting M1 macrophage apoptosis in the synovium, thereby delaying cartilage damage. Collectively, BTZ@PTK can effectively modulate inflammatory microenvironment for OA recession by activating M1 macrophage apoptosis and inhibiting M1macrophage-mediated inflammatory response.

13.
Int J Nanomedicine ; 19: 231-245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223881

RESUMEN

Background: As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods: Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results: The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion: Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.


Asunto(s)
Quitosano , Nanopartículas , Polifenoles , Humanos , Hidrogeles/farmacología , Antioxidantes/farmacología , Cobre/farmacología , Vendajes , Cicatriz , Antibacterianos/farmacología
14.
Adv Healthc Mater ; 13(11): e2303963, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38296248

RESUMEN

Adoptively transferred cells usually suffer from exhaustion, limited expansion, and poor infiltration, partially attributing to the complicated immunosuppressive microenvironment of solid tumors. Therefore, it is necessary to explore more effective strategies to improve the poor tumor microenvironment (TME) to efficaciously deliver and support extrinsic effector cells in vivo. Herein, an intelligent biodegradable hollow manganese dioxide nanoparticle (MnOX) that possesses peroxidase activity to catalyze excess H2O2 in the TME to produce oxygen and relieve the hypoxia of solid tumors is developed. MnOX nanoenzymes modified with CD56 antibody could specifically bind CAR-NK (chimeric antigen receptor modified natural killer) cells. It is demonstrated that CAR-NK cells incorporated with MnOX nanoenzymes effectively infiltrate into tumor tissues with an improved TME, which results in superior antitumor activity in solid tumor-bearing mice. The antibody connection between MnOX nanoenzymes and CAR-NK endows the lowest efficient dosage of MnOX. This study features a smart synergistic immunotherapy approach for solid tumors using MnOX nanoenzyme-armed CAR-NK cells, which would provide a valuable tool for immunocyte therapy in solid tumors.


Asunto(s)
Células Asesinas Naturales , Compuestos de Manganeso , Nanopartículas , Óxidos , Microambiente Tumoral , Animales , Compuestos de Manganeso/química , Ratones , Microambiente Tumoral/efectos de los fármacos , Óxidos/química , Nanopartículas/química , Humanos , Células Asesinas Naturales/inmunología , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo
15.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040762

RESUMEN

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Asunto(s)
Quimiocinas CC , Receptores de Quimiocina , Humanos , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacología , Receptores CCR8/genética , Ligandos , Quimiocina CCL1/metabolismo , Receptores de Quimiocina/genética , Anticuerpos
16.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100545

RESUMEN

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Asunto(s)
Inmunidad Innata , Pulmón , Humanos , Diferenciación Celular , Células Asesinas Naturales , Células Epiteliales
17.
Database (Oxford) ; 20232023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37935585

RESUMEN

By establishing omics sequencing of patient tumors as a crucial element in cancer treatment, the extensive implementation of precision oncology necessitates effective and prompt execution of clinical studies for approving molecular-targeted therapies. However, the substantial volume of patient sequencing data, combined with strict clinical trial criteria, increasingly complicates the process of matching patients to precision oncology studies. To streamline enrollment in these studies, we developed OncoCTMiner, an automated pre-screening platform for molecular cancer clinical trials. Through manual tagging of eligibility criteria for 2227 oncology trials, we identified key bio-concepts such as cancer types, genes, alterations, drugs, biomarkers and therapies. Utilizing this manually annotated corpus along with open-source biomedical natural language processing tools, we trained multiple named entity recognition models specifically designed for precision oncology trials. These models analyzed 460 952 clinical trials, revealing 8.15 million precision medicine concepts, 9.32 million entity-criteria-trial triplets and a comprehensive precision oncology eligibility criteria database. Most significantly, we developed a patient-trial matching system based on cancer patients' clinical and genetic profiles, which can seamlessly integrate with the omics data analysis platform. This system expedites the pre-screening process for potentially suitable precision oncology trials, offering patients swifter access to promising treatment options. Database URL  https://oncoctminer.chosenmedinfo.com.


Asunto(s)
Ensayos Clínicos como Asunto , Neoplasias , Humanos , Biomarcadores , Oncología Médica , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Medicina de Precisión
18.
Clin Appl Thromb Hemost ; 29: 10760296231209927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37933155

RESUMEN

Hemostatic disturbances after cardiac surgery can lead to excessive postoperative bleeding. Thromboelastography (TEG) was employed to evaluate perioperative coagulative alterations in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB), investigating the correlation between factors concomitant with cardiac surgery and modifications in coagulation. Coagulation index as determined by TEG correlated significantly with postoperative bleeding at 24-72 h after cardiac surgery (P < .001). Among patients with a normal preoperative coagulation index, those with postoperative hypocoagulability showed significantly lower nadir temperature (P = .003), larger infused fluid volume (P = .003), and longer CPB duration (P = .033) than those with normal coagulation index. Multivariate logistic regression showed that nadir intraoperative temperature was an independent predictor of postoperative hypocoagulability (adjusted OR: 0.772, 95% CI: 0.624-0.954, P = .017). Multivariate linear regression demonstrated linear associations of nadir intraoperative temperature (P = .017) and infused fluid volume (P = .005) with change in coagulation index as a result of cardiac surgery. Patients are susceptible to hypocoagulability after cardiac surgery, which can lead to increased postoperative bleeding. Ensuring appropriate temperature and fluid volume during cardiac surgery involving CPB may reduce risk of postoperative hypocoagulability and bleeding.


Asunto(s)
Coagulación Sanguínea , Procedimientos Quirúrgicos Cardíacos , Humanos , Estudios Retrospectivos , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Tromboelastografía , Hemorragia Posoperatoria/etiología , Factores de Riesgo , Puente Cardiopulmonar/efectos adversos
19.
Global Spine J ; : 21925682231212860, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918436

RESUMEN

STUDY DESIGN: Retrospective case-control study. OBJECTIVE: To explore the association of early postoperative nadir hemoglobin with risk of a composite outcome of anemia-related and other adverse events. METHODS: We retrospectively analyzed data from spinal tumor patients who received intraoperative blood transfusion between September 1, 2013 and December 31, 2020. Uni- and multivariate logistic regression was used to explore relationships of clinicodemographic and surgical factors with risk of composite in-hospital adverse events, including death. Subgroup analysis explored the relationship between early postoperative nadir hemoglobin and composite adverse events. RESULTS: Among the 345 patients, 331 (95.9%) experienced early postoperative anemia and 69 (20%) experienced postoperative composite adverse events. Multivariate logistic regression analysis showed that postoperative nadir Hb (OR = .818, 95% CI: .672-.995, P = .044), ASA ≥3 (OR = 2.007, 95% CI: 1.086-3.707, P = .026), intraoperative RBC infusion volume (OR = 1.133, 95% CI: 1.009-1.272, P = .035), abnormal hypertension (OR = 2.199, 95% CI: 1.085-4.457, P = .029) were correlated with composite adverse events. The lumbar spinal tumor was associated with composite adverse events with a decreased odds compared to thoracic spinal tumors (OR = .444, 95% CI: .226-.876, P = .019). Compared to patients with postoperative nadir hemoglobin ≥11.0 g/dL, those with nadir <9.0 g/dL were at significantly higher risk of postoperative composite adverse events (OR = 2.709, 95% CI: 1.087-6.754, P = .032). CONCLUSION: Nadir hemoglobin <9.0 g/dL after spinal tumor surgery is associated with greater risk of postoperative composite adverse events in patients who receive intraoperative blood transfusion.

20.
BMC Psychiatry ; 23(1): 740, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821875

RESUMEN

BACKGROUND: We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of blonanserin and risperidone for the treatment of schizophrenia and to provide reliable pharmacotherapeutic evidence for in the clinical treatment of schizophrenia. METHODS: We systematically searched the PubMed, Cochrane Library, Embase, Chinese Biomedical Literature Database (CBM), and China National Knowledge Infrastructure (CNKI) databases for head-to-head randomized controlled trials that compared blonanserin with risperidone for the treatment of schizophrenia. We extracted the following data: author, year, country, diagnostic criteria, sample size, course of treatment, dosage and outcomes. Our main endpoint was the changes in the Positive and Negative Syndrome Scale (PANSS) total scores. Meta-analysis of the included data was conducted by RevMan 5.3 software. We used the GRADE criteria to evaluate the certainty of the evidence. RESULTS: A total of 411 studies were initially; 8 trials were eligible and were included in our analysis (N = 1386 participants). Regarding efficacy, there was no difference in changes in the PANSS total scores between the two groups (P > 0.05). In terms of safety, compared to risperidone, the incidence of serum prolactin increases and weight gain in the blonanserin group was lower (P<0.05), but the incidence of extrapyramidal symptoms (EPS) was higher (P<0.05). CONCLUSION: The efficacy of blonanserin is similar to that of risperidone, but it is unclear whether blonanserin is more effective than risperidone at improving cognitive and social function. More high-quality studies are needed to verify the efficacy and safety of blonanserin in the future.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Risperidona/efectos adversos , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA