Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microbiol Spectr ; : e0438222, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877068

RESUMEN

Xanthomonas spp. encompass a wide range of phytopathogens that brings great economic losses to various crops. Rational use of pesticides is one of the effective means to control the diseases. Xinjunan (Dioctyldiethylenetriamine) is structurally unrelated to traditional bactericides, and is used to control fungal, bacterial, and viral diseases with their unknown mode of actions. Here, we found that Xinjunan had a specific high toxicity toward Xanthomonas spp., especially to the Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial leaf blight. Transmission electron microscope (TEM) confirmed its bactericidal effect by morphological changes, including cytoplasmic vacuolation and cell wall degradation. DNA synthesis was significantly inhibited, and the inhibitory effect enhanced with the increase of the chemical concentration. However, the synthesis of protein and EPS was not affected. RNA-seq revealed differentially expressed genes (DEGs) particularly enriched in iron uptake, which was subsequently confirmed by siderophore detection, intracellular Fe content and iron-uptake related genes transcriptional level. The laser confocal scanning microscopy and growth curve monitoring of the cell viability in response to different Fe condition proved that the Xinjunan activity relied on the addition of iron. Taken together, we speculated that Xinjunan exerted bactericidal effect by affecting cellular iron metabolism as a novel mode of action. IMPORTANCE Sustainable chemical control for rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae need to be developed due to limited bactericides with high efficiency, low cost, and low toxicity in China. This present study verified a broad-spectrum fungicide named Xinjunan possessing a specific high toxicity to Xanthomonas pathogens, which were further confirmed by affecting the cellular iron metabolism of Xoo as a novel mode of action. These findings will contribute to the application of the compound in the field control of Xanthomonas spp.-caused diseases, and be directive for future development of novel specific drugs for the control of severe bacterial diseases based on this novel mode of action.

2.
Plant Dis ; 105(11): 3538-3544, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34096770

RESUMEN

Pomegranate crown rot caused by Coniella granati is one of the most severe diseases of pomegranate. No fungicides have been registered for controlling this disease in China. Pyraclostrobin, belonging to strobilurin fungicides, has a broad spectrum of activity against many phytopathogens. In this study, based on the mycelial growth and conidial germination inhibition methods, we investigated the biological activity of pyraclostrobin against C. granati in the presence of 50 µg/ml of salicylhydroxamic acid using 80 isolates collected from different orchards in China from 2012 to 2018. The EC50 (50% effective concentration) values ranged from 0.040 to 0.613 µg/ml for mycelial growth and 0.013 to 0.110 µg/ml for conidium germination. Treated with pyraclostrobin, the hyphae morphology changed and conidial production of C. granati decreased significantly. The result of transmission electron microscope showed that treatment of pyraclostrobin could make the cell wall thinner and lead to ruptured cell membrane and formation of intracellular organelle autophagosomes. The pyraclostrobin showed good protective and curative activities against C. granati on detached pomegranate fruits. In field trials, pyraclostrobin showed excellent control efficacy against this disease, in which the treatment of 25% pyraclostrobin EC 1,000× provided 92.25 and 92.58% control efficacy in 2019 and 2020, respectively, significantly higher than that of other treatments. Therefore, pyraclostrobin could be a candidate fungicide for the control of pomegranate crown rot.


Asunto(s)
Granada (Fruta) , Ascomicetos , Frutas , Enfermedades de las Plantas , Estrobilurinas/farmacología
3.
Drug Des Devel Ther ; 8: 1515-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25284984

RESUMEN

Seventeen acylides bearing an aryl-tetrazolyl alkyl-substituted side chain were synthesized, starting from clarithromycin, via several reactions including hydrolysis, acetylating, esterification, carbamylation, and Michael addition. The structures of all new compounds were confirmed by (1)H nuclear magnetic resonance spectroscopy, (13)C nuclear magnetic resonance spectroscopy, and mass spectrometry. All these synthesized acylides were evaluated for in vitro antimicrobial activities against gram-positive pathogens (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative pathogens (Pseudomonas aeruginosa, Escherichia coli), using the broth microdilution method. Results showed that compounds 10 e, 10 f, 10 g, 10 h, 10 o have good antibacterial activities.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Macrólidos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Streptococcus/efectos de los fármacos , Tetrazoles/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Macrólidos/síntesis química , Macrólidos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA