Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Environ Manage ; 366: 121635, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971067

RESUMEN

Combatting land damage has become a global priority, and China has adopted a series of ecological engineering measures, especially in the agro-pastoral area with fragile ecological environment. The effectiveness of ecological engineering construction (EEC), from a comprehensive recognition encompassing its quality, quantity, and function, has remained largely unknown. To this end, Zhangbei County, a typical agro-pastoral ecotone of northern China, was chosen as our focal area. After summarizing the timelines, aims and results of the EEC during various periods in Zhangbei, the linear spectral mixture analysis was employed to process Landsat 5 TM images in 2000 and 2010, as well as Landsat 8 OLI images in 2020. Then, a comprehensive evaluation framework of EEC was established from the perspective of "quantity-quality-function", and the ecological effectiveness of EEC was evaluated from 2000 to 2020 in Zhangbei. Results revealed that EEC played a critical role in enhancing quantity, quality and function, in spite of that, there were still numerous regions showing varying degrees of degradation in terms of these aspects. Then, by extending the three-dimensional cube as the theoretical basis for the zoning management of EEC, we merged four zones according to the space matching relationship among quantity, quality and function of EEC, namely, Ecological conservation area, Ecological improvement area, Ecological restoration area and Ecological remodeling zone. More targeted ecological measures were required for specific matching relationship among quantity, quality and function of EEC. This study is expected to present an empirical case for assessing the ecological effectiveness of EEC in areas or countries with similar restoration demand and support regional management.

2.
Int Immunopharmacol ; 135: 112283, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38772299

RESUMEN

Toll-like receptors (TLRs) play a crucial role in mediating immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), as well as facilitating apoptotic cell (ACs) clearance (efferocytosis), thus contributing significantly to maintaining homeostasis and promoting tissue resolution. In this study, we investigate the impact of TLR agonists on macrophage efferocytosis. Our findings demonstrate that pretreatment with the TLR agonist lipopolysaccharide (LPS) significantly enhances macrophage phagocytic ability, thereby promoting efferocytosis both in vitro and in vivo. Moreover, LPS pretreatment confers tissue protection against damage by augmenting macrophage efferocytic capacity in murine models. Further examination reveals that LPS modulates efferocytosis by upregulating the expression of Tim4.These results underscore the pivotal role of TLR agonists in regulating the efferocytosis process and suggest potential therapeutic avenues for addressing inflammatory diseases. Overall, our study highlights the intricate interplay between LPS pretreatment and efferocytosis in maintaining tissue homeostasis and resolving inflammation.


Asunto(s)
Lipopolisacáridos , Macrófagos , Ratones Endogámicos C57BL , Fagocitosis , Animales , Fagocitosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Receptores Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Masculino , Humanos , Apoptosis/efectos de los fármacos , Células RAW 264.7 , Proteínas de la Membrana/metabolismo , Eferocitosis
3.
Front Immunol ; 15: 1366319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799464

RESUMEN

Introduction: Inflammatory bowel disease (IBD) is a chronic disease involving multiple genes, and the current available targeted drugs for IBD only deliver moderate efficacy. Whether there is a single gene that systematically regulates IBD is not yet known. MiR-146a plays a pivotal role in repression of innate immunity, but its function in the intestinal inflammation is sort of controversy, and the genetic regulatory networks regulated by miR-146a in IBD has not been revealed. Methods: RT-qPCR was employed to detect the expression of miR-146a in IBD patients and in a mouse IBD model induced by dextran sulfate sodium (DSS), and then we generated a miR-146a knock-out mouse line with C57/Bl6N background. The disease activity index was scored in DSS-treated miR-146a deficiency mice and their wild type (WT) littermates. Bulk RNA-sequencing, RT-qPCR and immunostaining were done to illustrate the downstream genetic regulatory networks of miR-146a in flamed colon. Finally, the modified miR-146a mimics were used to treat DSS-induced IBD in miR-146a knock-out and WT IBD mice. Results: We showed that the expression of miR-146a in the colon was elevated in dextran sulfate sodium (DSS)-induced IBD mice and patients with IBD. DSS induced dramatic body weight loss and more significant rectal bleeding, shorter colon length, and colitis in miR-146a knock-out mice than WT mice. The miR-146a mimics alleviated DSS-induced symptoms in both miR-146a-/- and WT mice. Further RNA sequencing illustrated that the deficiency of miR-146a de-repressed majority of DSS-induced IBD-related genes that cover multiple genetic regulatory networks in IBD, and supplementation with miR-146a mimics inhibited the expression of many IBD-related genes. Quantitative RT-PCR or immunostaining confirmed that Ccl3, Saa3, Csf3, Lcn2, Serpine1, Serpine2, MMP3, MMP8, MMP10, IL1A, IL1B, IL6, CXCL2, CXCL3, S100A8, S100A9, TRAF6, P65, p-P65, and IRAK1 were regulated by miR-146a in DSS induced IBD. Among them, MMP3, MMP10, IL6, IL1B, S100A8, S100A9, SERPINE1, CSF3, and IL1A were involved in the active stage of IBD in humans. Discussion: Our date demonstrated that miR-146a acts as a top regulator in C57/BL6N mice to systematically repress multiple genetic regulatory networks involved in immune response of intestine to environment factors, and combinatory treatment with miR-146a-5p and miR-146a-3p mimics attenuates DSS-induced IBD in mice through down-regulating multiple genetic regulatory networks which were increased in colon tissue from IBD patients. Our findings suggests that miR-146a is a top inhibitor of IBD, and that miR-146a-5p and miR-146a-3p mimics might be potential drug for IBD.


Asunto(s)
Sulfato de Dextran , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Enfermedades Inflamatorias del Intestino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs , Animales , MicroARNs/genética , Ratones , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Humanos , Masculino , Regulación de la Expresión Génica , Colitis/genética , Colitis/inducido químicamente , Femenino , Colon/metabolismo , Colon/patología
4.
Int Immunopharmacol ; 130: 111678, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38368773

RESUMEN

Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Eplerenona , Mineralocorticoides/metabolismo , Inmunidad Innata , Especies Reactivas de Oxígeno/metabolismo , Linfocitos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación/metabolismo
5.
ACS Appl Mater Interfaces ; 15(22): 26241-26251, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232130

RESUMEN

Synergetic photothermal/photodynamic/chemotherapy receives significant attention for precise in vivo cancer treatment. Despite plenty of encouraging photosensitizers explored, integrated nanoagents with multiple functions are still highly desired. In this study, novel nanocomposites coupling black phosphorus (BP) nanosheets, gold nanorods (AuNRs), carbon nanodots (CDs), and doxorubicin (Dox) are prepared. The nanoagents exhibit high antitumor activity on account of their broad light absorption, excellent catalytic ability, and significant photothermal and photodynamic effects. CDs not only emit bright fluorescence for accurate diagnosis and guiding of tumor treatment but also catalyze the generation of ROS for photodynamic therapy (PDT). The released Dox induces apoptosis of cells and increases the levels of H2O2 to promote PDT. AuNRs are the main photothermal therapy (PTT) material that converts light into heat. Moreover, BP can be used to enhance both PTT and PDT efficiencies, and the two therapy modes can be cooperatively reinforced. It is also found that the local immune microenvironment of the tumors is activated. The strategy makes good use of the features of each component. Satisfactory antitumor phenomena are well confirmed by in vitro and in vivo results. This study provides new insights into enhanced synergetic therapy, highlighting the great utility of BP-based nanoagents in the field of nanomedicine.


Asunto(s)
Nanotubos , Neoplasias , Fotoquimioterapia , Humanos , Carbono/uso terapéutico , Línea Celular Tumoral , Oro/uso terapéutico , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Fósforo/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral
6.
Cell Death Dis ; 14(5): 327, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193711

RESUMEN

Epithelial-mesenchymal transition (EMT) is associated with the invasive and metastatic phenotypes in colorectal cancer (CRC). However, the mechanisms underlying EMT in CRC are not completely understood. In this study, we find that HUNK inhibits EMT and metastasis of CRC cells via its substrate GEF-H1 in a kinase-dependent manner. Mechanistically, HUNK directly phosphorylates GEF-H1 at serine 645 (S645) site, which activates RhoA and consequently leads to a cascade of phosphorylation of LIMK-1/CFL-1, thereby stabilizing F-actin and inhibiting EMT. Clinically, the levels of both HUNK expression and phosphorylation S645 of GEH-H1 are not only downregulated in CRC tissues with metastasis compared with that without metastasis, but also positively correlated among these tissues. Our findings highlight the importance of HUNK kinase direct phosphorylation of GEF-H1 in regulation of EMT and metastasis of CRC.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Humanos , Fosforilación/fisiología , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Actinas/metabolismo , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Metástasis de la Neoplasia , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
7.
BMC Neurosci ; 24(1): 10, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721107

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant intracranial tumor with a low survival rate. However, only few drugs responsible for GBM therpies, hence new drug development for it is highly required. The natural product Cudraflavone B (CUB) has been reported to potentially kill a variety of tumor cells. Currently, its anit-cancer effect on GBM still remains unknown. Herein, we investigated whether CUB could affect the proliferation and apoptosis of GBM cells to show anti-GBM potential. RESULTS: CUB selectively inhibited cell viability and induced cell apoptosis by activating the endoplasmic reticulum stress (ER stress) related pathway, as well as harnessing the autophagy-related PI3K/mTOR/LC3B signaling pathway. Typical morphological changes of autophagy were also observed in CUB treated cells by microscope and scanning electron microscope (SEM) examination. 4-Phenylbutyric acid (4-PBA), an ER stress inhibitor, restored the CUB-caused alteration in signaling pathway and morphological change. CONCLUSIONS: Our finding suggests that CUB impaired cell growth and induced cell apoptosis of glioblastoma through ER stress and autophagy-related signaling pathways, and it might be an attractive drug for treatment of GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Autofagia , Apoptosis , Estrés del Retículo Endoplásmico
8.
Free Radic Biol Med ; 194: 1-11, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436726

RESUMEN

Glioblastoma is the most lethal intracranial malignant tumor, for which the five-year overall survival rate is approximately 5%. Here we explored the therapeutic combination of vitamin C and plasma-conditioned medium on glioblastoma cells in culture and as subcutaneous or intracranial xenografts in mice. The combination treatment reduced cell viability and proliferation while promoting apoptosis, and the effects were significantly stronger than with either treatment on its own. Similar results were obtained in the two xenograft models. Vitamin C appeared to upregulate aquaporin-3 and enhance the uptake of extracellular H2O2, while the combination treatment increased intracellular levels of reactive oxygen species including H2O2 and activated the JNK signaling pathway. The cytotoxic effects of the combination treatment were partially reversed by the specific JNK signaling inhibitor SP600125. Our results suggest that the combination of vitamin C and plasma-conditioned medium has therapeutic potential against glioblastoma, and they provide mechanistic insights that may help investigate this and other potential therapies in greater depth.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/metabolismo , Peróxido de Hidrógeno/metabolismo , Medios de Cultivo Condicionados/farmacología , Ácido Ascórbico/farmacología , Línea Celular Tumoral , Apoptosis , Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Vitaminas/farmacología
9.
Front Biosci (Landmark Ed) ; 28(12): 341, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38179762

RESUMEN

BACKGROUND: Vitexicarpin (VIT), an isoflavone derived from various medicinal herbs, has shown promising anti-tumor activities against multiple cancer cells. However, the understanding of the mechanisms and potential targets of VIT in treating triple-negative breast cancer (TNBC) remains limited. METHODS: The potential VIT targets were searched for in the Super-PRED online database, while the TNBC targets were acquired in the DisGeNET database, and the Veeny database was used to identify the VIT and TNBC targets that overlapped. Then, GO and KEGG enrichment analyses were carried out in the DAVID database. The protein-protein interaction (PPI) network was constructed to acquire the hub targets in the STRING database, and the overall survival analysis of the hub targets was examined in the Kaplan-Meier plotter database. Afterward, molecular docking was performed to evaluate the binding capabilities between VIT and the hub targets. In order to measure the effect of VIT on proliferation, apoptosis, and cell cycle arrest in the TNBC cell lines-MDA-MB-231 and HCC-1937-the Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis were performed. The Western blot and pull-down assays were used to verify the molecular mechanisms by modulating the hub targets. RESULTS: The network pharmacology results identified a total of 37 overlapping genes that were shared by VIT and TNBC. The results of the PPI network and molecular docking analyses showed that HSP90AA1, CREBBP, and HIF-1A were key targets of VIT against TNBC. However, the pull-down results suggested that VIT could directly bind to HSP90AA1 and HIF-1A, yet not to CREBBP. The results of the in vitro tests showed that VIT decreased proliferation and induced apoptosis in MDA-MB-231 and HCC-1937 cells, in a dose-dependent manner, while the cell cycle arrest occurred at the G2 phase. Mechanistically, the Western blot assay demonstrated that VIT decreased the expression of HSP90AA1, CREBBP, and HIF-1A. CONCLUSIONS: VIT inhibited growth and induced apoptosis of TNBC cells by modulating HIF-1A, HSP90AA1, and CREBBP expression. Our findings suggest that VIT is a potential drug for TNBC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Simulación del Acoplamiento Molecular , Farmacología en Red
10.
Front Oncol ; 12: 917537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091118

RESUMEN

Ferroptosis is one of the programmed modes of cell death that has attracted widespread attention recently and is capable of influencing the developmental course and prognosis of many tumors. Glioma is one of the most common primary tumors of the central nervous system, but effective treatment options are very limited. Ferroptosis plays a critical role in the glioma progression, affecting tumor cell proliferation, angiogenesis, tumor necrosis, and shaping the immune-resistant tumor microenvironment. Inducing ferroptosis has emerged as an attractive strategy for glioma. In this paper, we review ferroptosis-related researches on glioma progression and treatment.

11.
J Clin Med ; 11(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806945

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain tumor with high risks of recurrence and mortality. Chemoradiotherapy resistance has been considered a major factor contributing to the extremely poor prognosis of GBM patients. Therefore, there is an urgent need to develop highly effective therapeutic agents. Here, we demonstrate the anti-tumor effect of morusin, a typical prenylated flavonoid, in GBM through in vivo and in vitro models. Morusin showed selective cytotoxicity toward GBM cell lines without harming normal human astrocytes when the concentration was less than 20 µM. Morusin treatment significantly induced apoptosis of GBM cells, accompanied by the activation of endoplasmic reticulum (ER) stress, and the appearance of cytoplasmic vacuolation and autophagosomes in cells. Then, we found the ER stress activation and cytotoxicity of morusin were rescued by ER stress inhibitor 4-PBA. Furthermore, morusin arrested cell cycle at the G1 phase and inhibited cell proliferation of GBM cells through the Akt-mTOR-p70S6K pathway. Dysregulation of ERs and cell cycle in morusin exposed GBM cells were confirmed by RNA-seq analysis. Finally, we demonstrated the combination of morusin and TMZ remarkably enhanced ER stress and displayed a synergistic effect in GBM cells, and suppressed tumor progression in an orthotopic xenograft model. In conclusion, these findings reveal the toxicity of morusin to GBM cells and its ability to enhance drug sensitivity to TMZ, suggesting the potential application value of morusin in the development of therapeutic strategies for human GBM.

12.
Neuro Oncol ; 24(9): 1482-1493, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287174

RESUMEN

BACKGROUND: Glioblastoma stem cells (GSCs) and their interplay with tumor-associated macrophages (TAMs) are responsible for malignant growth and tumor recurrence of glioblastoma multiforme (GBM), but the underlying mechanisms are largely unknown. METHODS: Cell viability, stemness, migration, and invasion were measured in GSCs after the knockdown of upstream stimulating factor 1 (USF1). Luciferase assay and chromatin immunoprecipitation qPCR were performed to determine the regulation of CD90 by USF1. Immunohistochemistry and immunofluorescent staining were used to examine the expression of USF1 and GSC markers, as well as the crosstalk between GSCs and TAMs. In addition, the interaction between GSCs and TAMs was confirmed using in vivo GBM models. RESULTS: We show that USF1 promotes malignant glioblastoma phenotypes and GSCs-TAMs physical interaction by inducing CD90 expression. USF1 predicts a poor prognosis for glioma patients and is upregulated in patient-derived GSCs and glioblastoma cell lines. USF1 overexpression increases the proliferation, invasion, and neurosphere formation of GSCs and glioblastoma cell lines, while USF1 knockdown exerts an opposite effect. Further mechanistic studies reveal that USF1 promotes GSC stemness by directly regulating CD90 expression. Importantly, CD90 of GSCs functions as an anchor for physical interaction with macrophages. Additionally, the USF1/CD90 signaling axis supports the GSCs and TAMs adhesion and immunosuppressive feature of TAMs, which in turn enhance the stemness of GSCs. Moreover, the overexpression of CD90 restores the stemness property in USF1 knockdown GSCs and its immunosuppressive microenvironment. CONCLUSIONS: Our findings indicate that the USF1/CD90 axis might be a potential therapeutic target for the treatment of glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/genética , Glioblastoma/patología , Glioma/patología , Humanos , Células Madre Neoplásicas/metabolismo , Antígenos Thy-1/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores , Factores Estimuladores hacia 5'/metabolismo
13.
Comb Chem High Throughput Screen ; 25(6): 1040-1046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33797361

RESUMEN

OBJECTIVE: The goal of this study was to investigate the status of FEN1 in colorectal cancer (CRC) and determine the potential correlation between FEN1 expression level and clinicopathological parameters in CRC patients. METHODS: Expression of FEN1 in CRC tissue on tissue microarray was detected using immunohistochemistry (IHC). The relationship between FEN1 expression status and clinicopathologic characteristics of CRC was analyzed by the Chi-square test. The survival data of TCGA Colon Cancer (COAD) were obtained from ucsc xena browser (https://xenabrowser.net/). Patients were separated into higher and lower expression groups by median FEN1 expression. The association with prognosis of CRC patients was determined by Kaplan-Meier survival analysis with Log-rank test. RESULTS: FEN1expression level and cellular localization had wide variability among different individuals; we classified the staining results into four types: both positive in nucleus and cytoplasm, both negative in nucleus and cytoplasm, only positive in the nucleus, only positive in the cytoplasm. Moreover, FEN1 expression status only correlated with patient's metastasis status, and the patients in the NLCL group showed more risk of cancer cell metastasis. CONCLUSION: Our results indicate that FEN1 expression level and cellular localization had wide variability in CRC and is not a promising biomarker in CRC.


Asunto(s)
Neoplasias Colorrectales , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Endonucleasas de ADN Solapado , Humanos , Estimación de Kaplan-Meier
15.
Cell Death Dis ; 12(9): 827, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34480020

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Glioma/patología , Sistema de Señalización de MAP Quinasas , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular Tumoral , Adhesiones Focales/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/diagnóstico por imagen , Glioma/genética , Células HEK293 , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Fosforilación , Pronóstico , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba/genética , Cicatrización de Heridas
16.
Stem Cell Res Ther ; 12(1): 394, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256854

RESUMEN

BACKGROUND: The tumour microenvironment contributes to chemotherapy resistance in gliomas, and glioma-associated mesenchymal stromal/stem cells (gaMSCs) are important stromal cell components that play multiple roles in tumour progression. However, whether gaMSCs affect chemotherapy resistance to the first-line agent temozolomide (TMZ) remains unclear. Herein, we explored the effect and mechanism of gaMSCs on resistance to TMZ in glioma cells. METHODS: Human glioma cells (cell line U87MG and primary glioblastoma cell line GBM-1) were cultured in conditioned media of gaMSCs and further treated with TMZ. The proliferation, apoptosis and migration of glioma cells were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and wound-healing assays. The expression of FOXS1 in glioma cells was analysed by gene microarray, PCR and Western blotting. Then, FOXS1 expression in glioma cells was up- and downregulated by lentivirus transfection, and markers of the epithelial-mesenchymal transformation (EMT) process were detected. Tumour-bearing nude mice were established with different glioma cells and treated with TMZ to measure tumour size, survival time and Ki-67 expression. Finally, the expression of IL-6 in gaMSC subpopulations and its effects on FOXS1 expression in glioma cells were also investigated. RESULTS: Conditioned media of gaMSCs promoted the proliferation, migration and chemotherapy resistance of glioma cells. The increased expression of FOXS1 and activation of the EMT process in glioma cells under gaMSC-conditioned media were detected. The relationship of FOXS1, EMT and chemotherapy resistance in glioma cells was demonstrated through the regulation of FOXS1 expression in vitro and in vivo. Moreover, FOXS1 expression in glioma cells was increased by secretion of IL-6 mainly from the CD90low gaMSC subpopulation. CONCLUSIONS: CD90low gaMSCs could increase FOXS1 expression in glioma cells by IL-6 secretion, thereby activating epithelial-mesenchymal transition and resistance to TMZ in glioma cells. These results indicate a new role of gaMSCs in chemotherapy resistance and provide novel therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal , Glioma/tratamiento farmacológico , Glioma/genética , Ratones , Ratones Desnudos , Células Madre , Temozolomida/farmacología , Microambiente Tumoral
17.
ACS Appl Mater Interfaces ; 13(18): 21653-21660, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33905235

RESUMEN

Herein, we develop a novel and effective combination nanoplatform for cancer theranostics. Folic acid (FA) is first modified on the photothermal agent of polydopamine (PDA), which possesses excellent near-infrared (NIR) absorbance and thermal conversion features. Temperature-sensitive silver nanoclusters (AgNCs) are then synthesized on the DNA template that also loads the anticancer drug doxorubicin (Dox). After accumulation in cancer cells, PDA generates cytotoxic heat upon excitation of NIR light for photothermal therapy. On the other hand, the temperature increment is able to destroy the template of AgNCs, leading to the fluorescence variation and controlled release of Dox for chemotherapy. The combined nanosystem exhibits outstanding fluorescence tracing, NIR photothermal transduction, as well as chemo drug delivery capabilities. Both in vitro and in vivo results demonstrate excellent tumor growth suppression phenomena and no apparent adverse effects. This research provides a powerful targeted nanoplatform for cancer theranostics, which may have great potential value for future clinical applications.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , ADN/química , Doxorrubicina/administración & dosificación , Hipertermia Inducida , Indoles/química , Nanopartículas del Metal/química , Nanopartículas/química , Neoplasias/terapia , Polímeros/química , Plata/química , Línea Celular Tumoral , Terapia Combinada , Sinergismo Farmacológico , Fluorescencia , Humanos , Neoplasias/tratamiento farmacológico , Espectroscopía Infrarroja Corta , Moldes Genéticos
18.
PLoS Biol ; 19(4): e3001231, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905418

RESUMEN

MgtE is a Mg2+ channel conserved in organisms ranging from prokaryotes to eukaryotes, including humans, and plays an important role in Mg2+ homeostasis. The previously determined MgtE structures in the Mg2+-bound, closed-state, and structure-based functional analyses of MgtE revealed that the binding of Mg2+ ions to the MgtE cytoplasmic domain induces channel inactivation to maintain Mg2+ homeostasis. There are no structures of the transmembrane (TM) domain for MgtE in Mg2+-free conditions, and the pore-opening mechanism has thus remained unclear. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the MgtE-Fab complex in the absence of Mg2+ ions. The Mg2+-free MgtE TM domain structure and its comparison with the Mg2+-bound, closed-state structure, together with functional analyses, showed the Mg2+-dependent pore opening of MgtE on the cytoplasmic side and revealed the kink motions of the TM2 and TM5 helices at the glycine residues, which are important for channel activity. Overall, our work provides structure-based mechanistic insights into the channel gating of MgtE.


Asunto(s)
Antiportadores/química , Proteínas Bacterianas/química , Activación del Canal Iónico/fisiología , Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión/efectos de los fármacos , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citoplasma/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos , Dominios Proteicos/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Thermus thermophilus/metabolismo
19.
Commun Biol ; 4(1): 366, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742097

RESUMEN

GFP fusion-based fluorescence-detection size-exclusion chromatography (FSEC) has been widely employed for membrane protein expression screening. However, fused GFP itself may occasionally affect the expression and/or stability of the targeted membrane protein, leading to both false-positive and false-negative results in expression screening. Furthermore, GFP fusion technology is not well suited for some membrane proteins, depending on their membrane topology. Here, we developed an FSEC assay utilizing nanobody (Nb) technology, named FSEC-Nb, in which targeted membrane proteins are fused to a small peptide tag and recombinantly expressed. The whole-cell extracts are solubilized, mixed with anti-peptide Nb fused to GFP for FSEC analysis. FSEC-Nb enables the evaluation of the expression, monodispersity and thermostability of membrane proteins without the need for purification but does not require direct GFP fusion to targeted proteins. Our results show FSEC-Nb as a powerful tool for expression screening of membrane proteins for structural and functional studies.


Asunto(s)
Cromatografía en Gel , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Nanotecnología , Péptidos/metabolismo , Anticuerpos de Dominio Único/inmunología , Animales , Microscopía por Crioelectrón , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/inmunología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Oryzias/genética , Oryzias/metabolismo , Péptidos/genética , Péptidos/inmunología , Estabilidad Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Espectrometría de Fluorescencia , Temperatura , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
20.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568487

RESUMEN

The CNNM/CorC family proteins are Mg2+ transporters that are widely distributed in all domains of life. In bacteria, CorC has been implicated in the survival of pathogenic microorganisms. In humans, CNNM proteins are involved in various biological events, such as body absorption/reabsorption of Mg2+ and genetic disorders. Here, we determined the crystal structure of the Mg2+-bound CorC TM domain dimer. Each protomer has a single Mg2+ binding site with a fully dehydrated Mg2+ ion. The residues at the Mg2+ binding site are strictly conserved in both human CNNM2 and CNNM4, and many of these residues are associated with genetic diseases. Furthermore, we determined the structures of the CorC cytoplasmic region containing its regulatory ATP-binding domain. A combination of structural and functional analyses not only revealed the potential interface between the TM and cytoplasmic domains but also showed that ATP binding is important for the Mg2+ export activity of CorC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA