Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791354

RESUMEN

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Unión al ARN , Factores de Transcripción , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Redes Reguladoras de Genes , Plantas Modificadas Genéticamente
2.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611163

RESUMEN

Recently, the application of cryogenic hoses in the field of cryogenic media has become a hot topic, especially in the industry of offshore liquefied natural gas and aerospace field. However, the structure of cryogenic hoses is complex, and reasonable structural properties are required due to the harsh working conditions. There is still plenty of scope for further development to improve the performance in all aspects. In this paper, the current development status of cryogenic hoses for liquefied natural gas (LNG) transportation is reviewed first, including the types, manufacturers, structural forms, performance, and key technical challenges. And then, the recent progress and prospect of cryogenic hoses for cryogenic liquid transportation (such as LNG and liquid oxygen) are summarized, including structure design, low-temperature resistant polymers, liquid oxygen compatible polymers, and leakage monitoring technologies. This paper provides a comprehensive overview of the research development and application of cryogenic hoses. Moreover, future research directions have been proposed to facilitate its practical applications in aerospace.

3.
Front Plant Sci ; 13: 1005764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388482

RESUMEN

Xanthomonas campestris pv. campestris (Xcc) is a vascular bacteria pathogen causing black rot in cabbage. Here, the resistance mechanisms of cabbage against Xcc infection were explored by integrated metabolome and transcriptome analysis. Pathogen perception, hormone metabolisms, sugar metabolisms, and phenylpropanoid metabolisms in cabbage were systemically re-programmed at both transcriptional and metabolic levels after Xcc infection. Notably, the salicylic acid (SA) metabolism pathway was highly enriched in resistant lines following Xcc infection, indicating that the SA metabolism pathway may positively regulate the resistance of Xcc. Moreover, we also validated our hypothesis by showing that the flavonoid pathway metabolites chlorogenic acid and caffeic acid could effectively inhibit the growth of Xcc. These findings provide valuable insights and resource datasets for further exploring Xcc-cabbage interactions and help uncover molecular breeding targets for black rot-resistant varieties in cabbage.

4.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682623

RESUMEN

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an important leafy vegetable crop cultivated worldwide. Drought is one of the most important limiting factors for the growth, production and quality of Chinese cabbage due to its weak drought tolerance. In order to deepen the understanding of drought stress response in Chinese cabbage, metabolomics studies were conducted in drought-tolerant (DT) and drought-susceptible (DS) genotypes of Chinese cabbage under water deficit-simulated mild and severe drought stress conditions. A total of 777 metabolites were detected, wherein 90 of them were proposed as the drought-responsive metabolites in Chinese cabbage, with abscisic acid (ABA), serine, choline alfoscerate, and sphingosine as potential representative drought stress biomarkers. We also found that drought-tolerant and drought-susceptible genotypes showed differential metabolic accumulation patterns with contrasting drought response mechanisms. Notably, constitutively high levels of ABA and glutathione were detected in drought-tolerant genotype in all tested and control conditions. In addition, proline, sucrose, γ-aminobutyric acid, and glutathione were also found to be highly correlated to drought tolerance. This study is the first metabolomic study on how Chinese cabbage responds to drought stress, and could provide insights on how to develop and cultivate new drought-resistant varieties.


Asunto(s)
Brassica , Sequías , Brassica/genética , China , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Glutatión/genética , Estrés Fisiológico/genética
5.
New Phytol ; 233(5): 2282-2293, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34923631

RESUMEN

Blue-light (BL) phototropin receptors (phot1 and phot2) regulate plant growth by activating NPH3/RPT2-like (NRL) family members. Little is known about roles for BL and phots in regulating plant immunity. We showed previously that Phytophthora infestans RXLR effector Pi02860 targets potato (St)NRL1, promoting its ability to enhance susceptibility by facilitating proteasome-mediated degradation of the immune regulator StSWAP70. This raises the question: do BL and phots negatively regulate immunity? We employed coimmunoprecipitation, virus-induced gene silencing, transient overexpression and targeted mutation to investigate contributions of phots to regulating immunity. Whereas transient overexpression of Stphot1 and Stphot2 enhances P. infestans colonization of Nicotiana benthamiana, silencing endogenous Nbphot1 or Nbphot2 reduces infection. Stphot1, but not Stphot2, suppressed the INF1-triggered cell death (ICD) immune response in a BL- and NRL1-dependent manner. Stphot1, when coexpressed with StNRL1, promotes degradation of StSWAP70, whereas Stphot2 does not. Kinase-dead Stphot1 fails to suppress ICD, enhance P. infestans colonization or promote StSWAP70 degradation. Critically, BL enhances P. infestans infection, which probably involves phots but not other BL receptors such as cryptochromes and F-box proteins ZTL1 and FKF1. We demonstrate that Stphot1 and Stphot2 play different roles in promoting susceptibility, and Stphot1 kinase activity is required for BL- and StNRL1-mediated immune suppression.


Asunto(s)
Phytophthora infestans , Fototropinas/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
6.
J Plant Physiol ; 257: 153353, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33352460

RESUMEN

Anthocyanins, a major class of compounds derived from the flavonoid pathway, are important pigments of apple fruit. They can also prevent certain diseases and are beneficial to human health. Fruit pigmentation is a key quality trait that influences consumer preference; therefore, it is of great importance to investigate its regulatory mechanism. Here, we identified a MYB transcription factor (TF), MdMYB114, whose transcript level increased in the skin of the deep red apple fruit. It was determined to belong to the R2R3-MYB TF family and was localized in the nucleus. MdMYB114 overexpression led to anthocyanin accumulation in apple calli. MdMYB114 was not able to form an MBW complex but could enhance anthocyanin biosynthesis and transport by directly binding to the promoters of MdANS, MdUFGT, and MdGST to promote their expression. In addition, multiple assays revealed that MdbZIP4-like, a basic leucine-zipper TF, could directly bind to the MdMYB114 promoter to enhance its expression. Taken collectively, our results provide evidence that MdMYB114 is a positive regulator of anthocyanin biosynthesis and transport and it functions downstream of MdbZIP4-like in apple fruit.


Asunto(s)
Antocianinas/biosíntesis , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Malus/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Frutas/metabolismo , Malus/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Clin Lab ; 66(11)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33180437

RESUMEN

BACKGROUND: This study aimed to develop a method for assessing the sensitivity and diagnostic performance of the neutrophil surface CD64 stimulation index (SI) in tuberculosis infection. METHODS: A total of 149 samples were divided into three groups (tuberculosis group, n = 51; nontuberculosis infection group, n = 50; and healthy control group, n = 48). Flow cytometry was used to detect the sensitivity of CD64 SI on the surface of neutrophils. The sensitivities of CD64 SI before and after stimulation with ESAT-6 and CFP-10 antigens were compared using interferon-gamma release assay-enzyme-linked immunosorbent assay (IGRA-ELISA). RESULTS: The diagnostic threshold for CD64 SI based on the receiver operating characteristic curve was found to be 2.025, which is the standard for judging tuberculosis infection. The IGRA-ELISA and the CD64 SI assays were highly consistent with a kappa value of 0.635 (p < 0.003, 95% CI: 0.002 - 0.003). CONCLUSIONS: The neutrophil surface CD64 SI value detection method may serve as one of the new diagnostic methods for active Mycobacterium tuberculosis infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antígenos Bacterianos , Humanos , Ensayos de Liberación de Interferón gamma , Neutrófilos , Tuberculosis/diagnóstico
8.
Cell Commun Signal ; 18(1): 112, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665011

RESUMEN

BACKGROUND: Many cancers evade immune surveillance by overexpressing PD-L1. PD-L1 interacted with its receptor PD-1, resulting in reduction of T cell proliferation and activation and thereafter cancer cell death mediated by T-lymphocyte. Understanding the mechanisms that regulate PD-L1 was of vital importance for immune checkpoint blockade therapy (ICBT). METHODS: Human non-small cell lung cancer cells and 293FT cells were used to investigate the function of USP22 upon PD-L1 and CSN5 by WB, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. B16-F10 cells were used to explore the role of USP22 on tumorigenesis and T cell cytotoxicity. The relationship between USP22 and PD-L1 expression was investigated by Immunohistochemistry analysis in human non-small cell lung cancer samples. RESULTS: Our data showed that USP22 interacted with PD-L1 and promoted its stability. USP22 deubiquitinated PD-L1 and inhibited its proteasome degradation. Moreover, USP22 also interacted with CSN5 and stabilized CSN5 through deubiquitination. Either USP22 or CSN5 could facilitate the interaction of PD-L1 with the other one. Furthermore, USP22 removed K6, K11, K27, K29, K33 and K63-linked ubiquitin chain of both CSN5 and PD-L1. In addition, USP22 depletion inhibited tumorigenesis and promoted T cell cytotoxicity. Besides, USP22 expression positively correlated with PD-L1 expression in human non-small cell lung cancer samples. CONCLUSIONS: Here, we suggested that USP22 is a new regulator for PD-L1. On the one hand, USP22 could directly regulate PD-L1 stability through deubiquitination. On the other hand, USP22 regulated PD-L1 protein level through USP22-CSN5-PD-L1 axis. In addition, USP22 depletion inhibited tumorigenesis and promoted T cell cytotoxicity. Besides, USP22 expression positively correlated with PD-L1 expression in human non-small cell lung cancer samples. Together, we identified a new regulator of PD-L1 and characterized the important role of USP22 in PD-L1 mediated immune evasion. Targeting USP22 might be a new solution to ICBT. Video abstract.


Asunto(s)
Antígeno B7-H1/metabolismo , Proteolisis , Ubiquitina Tiolesterasa/metabolismo , Animales , Complejo del Señalosoma COP9/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células HEK293 , Humanos , Terapia de Inmunosupresión , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones , Péptido Hidrolasas/metabolismo , Unión Proteica , Estabilidad Proteica , Linfocitos T/inmunología , Ubiquitinación
9.
Plant Biotechnol J ; 18(8): 1736-1748, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31930634

RESUMEN

Methylation at the MdMYB1 promoter in apple sports has been reported as a regulator of the anthocyanin pathway, but little is known about how the locus is recognized by the methylation machinery to regulate anthocyanin accumulation. In this study, we analysed three differently coloured 'Fuji' apples and found that differences in the transcript levels of MdMYB1, which encodes a key regulator of anthocyanin biosynthesis, control the anthocyanin content (and therefore colour) in fruit skin. The CHH methylation levels in the MR3 region (-1246 to -780) of the MdMYB1 promoter were found to be negatively correlated with MdMYB1 expression. Thus, they were ideal materials to study DNA methylation in apple sports. The protein of RNA-directed DNA methylation (RdDM) pathway responsible for CHH methylation, MdAGO4, was found to interact with the MdMYB1 promoter. MdAGO4s can interact with MdRDM1 and MdDRM2s to form an effector complex, fulfilling CHH methylation. When MdAGO4s and MdDRM2s were overexpressed in apple calli and Arabidopsis mutants, those proteins increase the CHH methylation of AGO4-binding sites. In electrophoretic mobility shift assays, MdAGO4s were found to specifically bind to sequence containing ATATCAGA. Knockdown of MdNRPE1 did not affect the binding of MdAGO4s to the c3 region of the MdMYB1 promoter in 35S::AGO4 calli. Taken together, our data show that the MdMYB1 locus is methylated through binding of MdAGO4s to the MdMYB1 promoter to regulate anthocyanin biosynthesis by the RdDM pathway.


Asunto(s)
Malus , Antocianinas/metabolismo , Metilación de ADN/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Sci ; 289: 110286, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623786

RESUMEN

Anthocyanin and proanthocyanidin (PA) play important roles in plant growth and development. Although previous studies have identified many of the transcription factors involved in the anthocyanin and PA pathway, the regulation mechanisms of these pathways remain poorly understood. In this study, we identified a NAC transcription factor, MdNAC52, whose gene transcript levels increased during apple coloration. Apple calli overexpressing MdNAC52 accumulated anthocyanin. Yeast one-hybrid, electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays showed that MdNAC52 could interact with the promoters of MdMYB9 and MdMYB11 to regulate anthocyanin biosynthesis. MdNAC52 was targeted by MdHY5 in response to light. Interestingly, MdNAC52 participated in the regulation of PA biosynthesis through controlling the expression of MdMYB9 and MdMYB11. MdNAC52 could also bind to the LAR promoter to regulate its expression and promote PA synthesis. Overall, these findings establish that MdNAC52 binds to the promoters of MdMYB9 and MdMYB11 to promote anthocyanin and PA biosynthesis and directly regulates LAR to modulate PA metabolism. Our study provides new insights into the roles of a NAC transcription factor in regulating anthocyanin and PA accumulation in apple.


Asunto(s)
Antocianinas/biosíntesis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proantocianidinas/biosíntesis , Factores de Transcripción/genética , Secuencia de Aminoácidos , Antocianinas/genética , Malus , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proantocianidinas/genética , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
11.
Hortic Res ; 6: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854214

RESUMEN

Anthocyanins are biosynthesized on the cytosolic surface of the endoplasmic reticulum and then transported into the vacuole for storage. Glutathione S-transferases (GSTs) are considered to be responsible for the transport of anthocyanins into the vacuole. However, the regulatory mechanisms of GSTs in plants are still unclear. Here, we performed a genome-wide analysis and identified 69 GST genes in apple. The expression of MdGSTF6 was positively correlated with the anthocyanin content (r = 0.949) during 'Yanfu 8' fruit development. The overexpression of MdGSTF6 in the Arabidopsis thaliana tt19 mutant resulted in seedlings of 35S::MdGSTF6-GFP/tt19 that could accumulate anthocyanin and rescue its phenotype, suggesting that MdGSTF6 was an anthocyanin transporter. The silencing of MdGSTF6 affected anthocyanin accumulation in apple fruit. Moreover, the knockdown of MdGSTF6 by RNA interference in cultured 'Gala' seedlings inhibited anthocyanin accumulation. The interaction experiments showed that MdMYB1 could bind directly to the MdGSTF6 promoter to transcriptionally activate its expression. Collectively, our results demonstrate that MdGSTF6 encodes an important GST transporter of anthocyanins in apple fruit and provide evidence for the associated regulatory mechanisms. Therefore, MdMYB1 can not only regulate anthocyanin synthesis, but also control the transport of anthocyanin in apples. This information may be useful for further clarifying the regulation of anthocyanin transport in apple.

12.
BMC Genomics ; 20(1): 117, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732560

RESUMEN

BACKGROUND: Fruit peel colour is an important agronomic trait for fruit quality. Cytosine methylation plays an important role in gene regulation. Although the DNA methylation level of a single gene is important to affect the phenotype of mutation, there are large unknown of difference of the DNA methylation in plant and its mutants. RESULTS: Using bisulfite sequencing (BS-Seq) and RNA-sequencing (RNA-Seq), we analysed three deep-red-skinned apple (Malus × domestica) mutants (Yanfu 3, YF3; Yanfu 8, YF8; Shannonghong, SNH) and their lighter-skinned parents (Nagafu 2, NF2; Yanfu 3, YF3; Ralls, RL) to explore the different changes in methylation patterns associated with anthocyanin concentrations. We identified 13,405, 13,384, and 10,925 differentially methylated regions (DMRs) and 1987, 956, and 1180 differentially expressed genes (DEGs) in the NF2/YF3, YF3/YF8, and RL/SNH comparisons, respectively. And we found two DMR-associated DEGs involved in the anthocyanin pathway: ANS (MD06G1071600) and F3H (MD05G1074200). These genes exhibited upregulated expression in apple mutants, and differences were observed in the methylation patterns of their promoters. These results suggested that both the regulatory and structural genes may be modified by DNA methylation in the anthocyanin pathway. However, the methylation of structural genes was not the primary reason for expression-level changes. The expression of structural genes may be synergistically regulated by transcription factors and methylation changes. Additionally, the expression of the transcription factor gene MYB114 (MD17G1261100) was upregulated in the deep-red-skinned apple. CONCLUSION: Through the analysis of global methylation and transcription, we did not find the correlation between gene expression and the DNA methylation. However, we observed that the upregulated expression of ANS (MD06G1071600) and F3H (MD05G1074200) in apple mutants results in increased anthocyanin contents. Moreover, MYB114 (MD17G1261100) is likely another regulatory gene involved in apple coloration. Our data provided a new understanding about the differences in formation of apple colour mutants.


Asunto(s)
Metilación de ADN/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Malus/genética , Mutación , Fenotipo , Pigmentación/genética , Antocianinas/metabolismo , Frutas/genética , Genómica , Malus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA