Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 4377-4409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774029

RESUMEN

Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.


Asunto(s)
Accidente Cerebrovascular Isquémico , Nanopartículas , Neovascularización Fisiológica , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Animales , Nanopartículas/química , Neovascularización Fisiológica/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Liposomas/química , Sistemas de Liberación de Medicamentos/métodos , Sistema de Administración de Fármacos con Nanopartículas/química , Angiogénesis
3.
Mol Neurobiol ; 60(7): 3741-3757, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36940077

RESUMEN

Excessive activation of aldose reductase (AR) in the brain is a risk factor for aggravating cerebral ischemia injury. Epalrestat is the only AR inhibitor with proven safety and efficacy, which is used in the clinical treatment of diabetic neuropathy. However, the molecular mechanisms underlying the neuroprotection of epalrestat remain unknown in the ischemic brain. Recent studies have found that blood-brain barrier (BBB) damage was mainly caused by increased apoptosis and autophagy of brain microvascular endothelial cells (BMVECs) and decreased expression of tight junction proteins. Thus, we hypothesized that the protective effect of epalrestat is mainly related to regulating the survival of BMVECs and tight junction protein levels after cerebral ischemia. To test this hypothesis, a mouse model of cerebral ischemia was established by permanent middle cerebral artery ligation (pMCAL), and the mice were treated with epalrestat or saline as a control. Epalrestat reduced the ischemic volume, enhanced BBB function, and improved the neurobehavior after cerebral ischemia. In vitro studies revealed that epalrestat increased the expression of tight junction proteins, and reduced the levels of cleaved-caspase3 and LC3 proteins in mouse BMVECs (bEnd.3 cells) exposed to oxygen-glucose deprivation (OGD). In addition, bicalutamide (an AKT inhibitor) and rapamycin (an mTOR inhibitor) increased the epalrestat-induced reduction in apoptosis and autophagy related protein levels in bEnd.3 cells with OGD treatment. Our findings suggest that epalrestat improves BBB function, which may be accomplished by reducing AR activation, promoting tight junction proteins expression, and upregulating AKT/mTOR signaling pathway to inhibit apoptosis and autophagy in BMVECs.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Lesiones Encefálicas/metabolismo , Glucosa/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
Immunol Lett ; 250: 29-40, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108773

RESUMEN

Myasthenia gravis (MG) is characterized by fatigable skeletal muscle weakness with a fluctuating and unpredictable disease course and is caused by circulating autoantibodies and pathological T helper cells. Regulation of B-cell function and the T-cell network may be a potential therapeutic strategy for MG. MicroRNAs (miRNAs) have emerged as potential biomarkers in immune disorders due to their critical roles in various immune cells and multiple inflammatory diseases. Aberrant miR-146a signal activation has been reported in autoimmune diseases, but a detailed exploration of the relationship between miR-146a and MG is still necessary. Using an experimental autoimmune myasthenia gravis (EAMG) rat model, we observed that miR-146a was highly expressed in the spleen but expressed at low levels in the thymus and lymph nodes in EAMG rats. Additionally, miR-146a expression in T and B cells was also quite different. EAMG-specific Th17 and Treg cells had lower miR-146a levels, while EAMG-specific B cells had higher miR-146a levels, indicating that targeted intervention against miR-146a might have diametrically opposite effects. Metformin, a drug that was recently demonstrated to alleviate EAMG, may rescue the functions of both Th17 cells and B cells by reversing the expression of miR-146a. We also investigated the downstream target genes of miR-146a in both T and B cells using bioinformatics screening and qPCR. Taken together, our study identifies a complex role of miR-146a in the EAMG rat model, suggesting that more caution should be paid in targeting miR-146a for the treatment of MG.


Asunto(s)
Metformina , MicroARNs , Miastenia Gravis Autoinmune Experimental , Receptores Colinérgicos/inmunología , Animales , Autoanticuerpos , Linfocitos B , Biomarcadores , Metformina/farmacología , Metformina/uso terapéutico , MicroARNs/genética , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/genética , Ratas , Células Th17
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA